
VIS Framework Documentation
Release 3.0.5

Christopher Antila

May 18, 2017





Contents

1 One-Paragraph Introduction 3

2 Table of Contents 5
2.1 Learn about and Install the VIS Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Programming Tutorials for VIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 API Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Indices and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Python Module Index 51

i



ii



VIS Framework Documentation, Release 3.0.5

This is the API documentation for the VIS Framework for Music Analysis. The VIS Framework is a Python package
that uses music21 and pandas to build a flexible and easy system for writing symbolic music analysis computer
programs. By providing a free-and-open solution (AGPLv3+) we hope to lower the barrier to empirical music analysis.
The VIS Framework was developed at McGill University as part of the ELVIS Project (http://elvisproject.ca). VIS has
been presented at conferences, including the International Society for Music Information Retrieval and the Society for
Music Theory.

The API is written for programmers interested in symbolic music information retrieval (i.e., music theory analysis
performed by computers). Musicologists and programmers alike may access our VIS client at vis-rodan.simssa.ca,
and some of our research findings from the ELVIS Project’s website.

The rest of the documentation discusses the VIS Framework’s architecture, how to install and use the framework, and
how to add your own analysis tasks.

Contents 1

http://elvisproject.ca
https://vis-rodan.simssa.ca
https://elvisproject.ca/research/


VIS Framework Documentation, Release 3.0.5

2 Contents



CHAPTER 1

One-Paragraph Introduction

The VIS Framework uses two data models (IndexedPiece and AggregatedPieces) to fetch results for one or
multiple pieces, respectively. Call their get_data() method with a list of analyzer classes to run, and a dictionary
with their settings. After you develop an analysis workflow, add it to the WorkflowManager for more consistent
operation.

3



VIS Framework Documentation, Release 3.0.5

4 Chapter 1. One-Paragraph Introduction



CHAPTER 2

Table of Contents

Learn about and Install the VIS Framework

Design Principles

Three Simple Components

In essence, the VIS Framework is built on three simple components: analyzers make music analysis decisions; models
run analyzers on a score; the WorkflowManager determines the order analyzers are run. In other words, the three
components are about analysis decisions, making the decisions happen, and ordering the decision-happening.

Consider this example. A common task for VIS is to count the number of vertical intervals in a piece of music. You
ask the WorkflowManager to run this query. The WorkflowManager knows the steps involved: (1) name the notes in
a score, (2) find the vertical intervals between simultaneous notes, and (3) count the number of occurrences of every
interval. For each step, the WorkflowManager asks a model for results. The model represents a piece, and it knows,
for example, how to find simultaneous events, and how to meaningfully organize the results of an analyzer. Finally,
an analyzer makes a single type of music analysis decision, for a single moment. For example, the analyzer called
IntervalIndexer takes two note names and determines the interval between them.

For a relatively simple music analysis task like counting the number of vertical intervals, these three components may
seem anything but simple. For more complicated music analysis tasks, the Framework’s architecture begins to pay
off. Whether finding contrapuntal modules, analyzing harmonic function, or anything else, these components will be
enough to get the job done. To design a new query (say, if you want to label chordal dissonances) you only need
to add one analyzer for every analysis decision, then tell the WorkflowManager the order the analyzers should run.
Complicated analysis tasks will always be complicated, but VIS provides a solid, predictable Framework for any task,
allowing you to focus on what’s special about your query, rather than on making sure you remember how to load
pieces properly.

Three Levels of Interaction

Because of its flexibility, you may choose to interact with the VIS Framework on one of three levels, depending on the
flexibility required for your task.

5



VIS Framework Documentation, Release 3.0.5

If you simply want to use VIS for one of its built-in queries, like finding vertical intervals or contrapuntal modules,
you can use VIS as a program. You may do this through a graphical interface like the Counterpoint Web App or
through the Python shell directly, as described in use_as_a_program.

If the built-in WorkflowManager does not provide the workflow you need, but you can still accomplish your query
with the built-in analyzers, you can use VIS as a library. For example, you may wish to analyze melodic patterns
with n-grams, as described in Tutorial: Use N-Grams to Find Melodic Patterns.

Finally, if your query cannot be implemented using the built-in analyzers, you can use VIS as a framework, adding
analyzer modules and modifying the WorkflowManager as necessary. For example, you may wish to DO WHAT-
EVER WILL BE DESCRIBED IN THIS CROSS-REF.

A More Detailed Look

Two Types of Analyzers

Analyzers make music analysis decisions. The VIS Framework has two types of analyzers: indexers and experi-
menters.

Indexers use a music21.stream.Score, or a pandas.DataFrame from another indexer, to perform a mu-
sic analytic calculation. The output of any indexer can be sensibly attached to a specific moment of a piece.
That is, indexers are for events that “happen” at an identifiable time. Indexers may be relatively simple, like the
IntervalIndexer, which accepts an index of the notes and rests in a piece, transforming it into an index of the
vertical intervals between all the pairs of parts. Indexers may also be complicated, like the NGramIndexer, which
accepts at least one index of anything, and outputs an index of successions found therein. An indexer might tell you
scale degrees, the harmonic function of a chord, the figured bass signature of a simultaneity, or the moment of a
modulation.

Experimenters always start with a DataFrame produced by another analyzer, producing results that cannot be sen-
sibly attached to a specific moment of a piece. That is, experimenters are for characteristics of a piece (or movement)
as a whole. Experiments may be relatively simple, like the FrequencyExperimenter, which counts the number
of occurrences of the objects in a DataFrame. Experimenters may also be complicated, like one that produces a
Markov transition model of figured bass signatures.

The distinction between indexers and experimenters helps to organize valid workflows. Analyses may flow from
indexer to indexer, from indexer to experimenter, and from experimenter to experimenter. However, an analysis may
not move from an experimenter to an indexer; once moment-specific information is lost, it cannot be recovered. (The
exception to the rule: indexers may use data from experimenters—as long as they also use data from another indexer
or a Score).

When designing your own analyzers, we encourage you to avoid the temptation to include many analysis steps in the
same analyzer, and instead to follow the design pattern set out with our own analyzers and our TemplateIndexer
and TemplateExperimenter. Following this design pattern helps ensure your program is easy to test, and there-
fore more trustworthy. In addition, you may be able to contribute valuable new analyzer modules that will help other
scholars get started with VIS more easily.

If required, you may use an analyzer to run external programs, possibly written in a different programming language.
For example, the RBarChart experimenter runs a program in the R language, using the ggplot2 library to produce a
bar chart. Another example is the LilyPondExperimenter, which uses the external outputlilypond Python
module to produce a file for LilyPond, a C program, which that module calls directly.

Two Types of Models

VIS uses two types of models: IndexedPiece and AggregatedPieces. These models represent a single piece
(or movement), and a group of pieces (and movements), respectively. In a typical application, you will write analyzers
but never call their methods directly. On the other hand, you will almost never modify the models, but call their

6 Chapter 2. Table of Contents

https://counterpoint.elvisproject.ca
http://web.mit.edu/music21/doc/moduleReference/moduleStream.html#music21.stream.Score
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame
https://lilypond.org


VIS Framework Documentation, Release 3.0.5

methods very often. Models know how to run analyzers on the piece or pieces they represent, how to import music21
Score objects safely and efficiently, and how to find and access metadata. The models also perform some level of
automated error-handling and data-coordination. In the future, the models may also help coordinate multiprocessing
or results-caching, and they should be able to do this without a change in the API.

Known Issues and Limitations

• Limitation: By default, the vis framework does not use multiprocessing at all. If you install the optional packages
for pandas, many of the pandas-based indexers and experimenters will use multi-threading in C. However, there
are many opportunities to use multiprocessing where we have yet to do so. While we initially planned for the
indexers and experimenters to use multiprocessing, we later decided that the high overhead of multiprocessing
in Python means we should leave the multiprocessing implementation up to application developers—the realm
of the WorkflowManager.

• Limitation: For users and developers concerned with counterpoint. The framework currently offers no way to
sensitively process voice crossing in contrapuntal modules (“interval n-grams”). “Higher” and “lower” voices
are consistently presented in score order. We have planned for several ways to deal with this situation, but the
developer assigned to the task is a busy doctoral student and a novice programmer, so the solutions have not
been fully implemented yet.

Install the Framework

You must install the VIS Framework before you use it. Our recommended installation method depends on how you
plan to use VIS.

If you plan to use VIS as a program or a library, you should install the Framework for deployment. This includes users
who will conduct their own analyses with the built-in modules, and users who will host an instance of the Counterpoint
Web App. A deployment installation will always be “stable” software, meaning that the software has been tested more
thoroughly, and we can offer a higher assurance of correctness.

If you plan to use VIS as a framework, you should install the Framework for development. This includes users who
will write their own analyzers for the VIS Framework, and users who will modify existing modules. A development
installation allows you to use the most up-to-date versions of VIS, and even to suggest your improvements for inclusion
in a VIS release, although these versions may crash more often and be less correct than deployment versions.

You may safely install the VIS Framework multiple times on the same computer, including a mixture of deployment
and development installations.

Python 3

With the release of VIS Framework 2.1, VIS can run and is tested with Python 2.7, 3.3, and 3.4. We recommend a
Python 3 release for reasons of future compatibility. The music21 developers have announced plans to drop support for
Python 2.7 in calendar year 2016, at which point VIS will also drop support for Python 2.7. Python 3.4 offers several
major enhancements over Python 3.3, including improved speed of execution, so we recommend you use Python 3.4
if possible.

Install for Deployment

You must install the VIS Framework before you use it. If you will not write extensions for the Framework, you may
use pip to install the package from the Python Package Index (PyPI—https://pypi.python.org/pypi/vis-framework/).
Run this command:

2.1. Learn about and Install the VIS Framework 7

https://github.com/ELVIS_Project/web-vis
https://github.com/ELVIS_Project/web-vis
https://pypi.python.org/pypi/vis-framework/


VIS Framework Documentation, Release 3.0.5

$ pip install vis-framework

You may also wish to install some or all of the optional dependencies:

• numexpr and bottleneck, which speed up pandas.

• openpyxl, which allows pandas to export Excel-format spreadsheets.

• cython and tables, which allow pandas to export HDF5-format binary files.

You may install optional dependencies in the same ways as VIS itself. For example:

$ pip install numexpr bottleneck

Install for Development

If you wish to install the VIS Framework for development work, we recommend you clone our Git repository from
https://github.com/ELVIS-Project/vis/, or even make your own fork on GitHub. You may also wish to checkout a par-
ticular version for development with the “checkout” command, as git checkout tags/vis-framework-1.
2.3 or git checkout master.

If you installed git, but you need help to clone a repository, you may find useful information in the git documentation.

After you clone the VIS repository, you should install its dependencies (listed in the “requirements.py” file), for
which we recommend you use pip. From the main VIS directory, run pip install -r requirements.
txt to automatically download and install the library dependencies. We also recommend you run pip install
-r optional_requirements.txt to install several additional packages that improve the speed of pandas and
allow additional output formats (Excel, HDF5). You may need to use sudo or su to run pip with administrator
privileges, though we recommend using virtualenv. If you do not have pip installed, use your package manager (the
package is probably called python-pip—at least for users of Fedora, Ubuntu, and openSUSE). If you are one of
the unfortunate souls who uses Windows, or worse, Mac OS X, then clearly we come from different planets. The pip
documentation may help you.

During development, you should usually start python (or ipython, etc.) from within the main “vis” directory to
ensure proper importing.

The WorkflowManager is not required for the framework’s operation. We recommend you use the
WorkflowManager directly or as an example to write new applications. The vis framework gives you tools to
answer a wide variety of musical questions. The WorkflowManager uses the framework to answer specific ques-
tions. Please refer to Tutorial: Use the WorkflowManager for more information.

Optional: Test the Framework Before Use

You may wish to run the VIS Framework’s automated test suite before you use it, to confirm the installation was
successful and is working as expected.

To run the test suite:

1. Change into the main VIS directory (this will depend on your installation, but it will be similar to /
usr/lib/python3.4/site-packages/vis-framework or /home/crantila/virtualenvs/
vis-virtenv3/lib/python3.4/site-packages/vis-framework.

2. If you installed VIS with a virtualenv, activate the virtualenv (e.g., source ~/virtualenvs/
vis-virtenv3/bin/activate).

3. Run the test script: python run_tests.py.

4. Python prints a . character for every successful test, and an error or warning for every test that fails.

8 Chapter 2. Table of Contents

https://github.com/ELVIS-Project/vis/
http://git-scm.com/book/en/Git-Basics-Getting-a-Git-Repository#Cloning-an-Existing-Repository
http://www.pip-installer.org/en/latest/installing.html
http://www.pip-installer.org/en/latest/installing.html


VIS Framework Documentation, Release 3.0.5

If Tests Fail

If you are using a deployment release and one or more of the automated tests fail, the most likely reason is that the
installation was somehow unsuccessful. This may result from using untested versions of a dependency, unexpectedly
troublesome environment variables, or other factors. If you used distribution packages (i.e., did not use virtualenv)
and tests fail, we do recommend in that case installing with virtualenv. Both with and without virtualenv, if tests fail,
ensure you are using the exact package versions indicated in requirements.txt, since they are the versions used
by the development team.

If you are using a development release and automated tests fail, check if those tests also fail on our “Travis CI” test
server. If so, the VIS development team is already aware of the failure and working toward a fix, since Travis will
notify us by email if a test fails. You may also try the version-related advice in the previous paragraph, though you
may also wish to prepare a fix for the problem and submit it to us as a GitHub pull request.

Optional: Install R and ggplot2 for Graphs

If you wish to produce graphs with the VIS Framework, you must install an R interpreter and the ggplot2 library. We
test with 3.0.x versions of R.

If you use a “Windows” computer, download a pre-compiled R interpreter from http://cran.r-project.org. If you use an
“OS X” computer, you may download a pre-compiled binary or use a package from Homebrew, Fink, or MacPorts.
If you use a “Linux” computer (or “BSD,” etc.), check your package manager for an appropriate version of R. You
may have difficulty searching for “R,” as in yum search R, since it is a common letter, so we recommend you
assume the package is called “R” and try to search only if that does not work. If your distribution does not provide
an R binary, or provides an older version than 3.0.0, install R from source code: http://cran.r-project.org/doc/manuals/
r-release/R-admin.html. For all operating systems, if you encounter a problem, the R manuals offer extensive help,
but require careful attention.

After you install R, you must install the ggplot2 package. If you installed R with your package manager, we rec-
ommend you search for and use the “ggplot” package, if one is provided. (Distribution packages offer maximum
compatibility, and take advantage of centralized software updates).

Use the following instructions, which work on all operating systems, if you do not have a distribution package for
ggplot2.

1. Start R (with superuser privileges, if not using Windows).

2. Run the following command to install ggplot2:

install.packages("ggplot2")

3. Run the following program to test R and ggplot2:

huron <- data.frame(year=1875:1972, level=as.vector(LakeHuron))
library(plyr)
huron$decade <- round_any(huron$year, 10, floor)
library(ggplot)
h <- ggplot(huron, aes(x=year))
h + geom_ribbon(aes(ymin=level-1, ymax=level+1))

Expect to see a chart like this:

Quit R. You do not need to save your workspace:

q()

2.1. Learn about and Install the VIS Framework 9

http://cran.r-project.org
http://cran.r-project.org/doc/manuals/r-release/R-admin.html
http://cran.r-project.org/doc/manuals/r-release/R-admin.html


VIS Framework Documentation, Release 3.0.5

Fig. 2.1: Image credit: taken from the “ggplot2” documentation on 26 November 2013; reused here under the GNU
General Public License, version 2.

10 Chapter 2. Table of Contents

http://docs.ggplot2.org/current/geom_ribbon.html


VIS Framework Documentation, Release 3.0.5

Optional: Install LilyPond for Annotated Scores

If you wish to produce annotated scores with the VIS Framework, you must install LilyPond.

The outputlilypond module, used by VIS, is targeted for 2.18.x versions of LilyPond, though it should also work with
2.16.x versions. We do note recommend versions numbered 2.15.x, 2.17.x, and 2.19.x, since these are intended only
for LilyPond developers, and they may crash or produce incorrect output. If possible, we recommend you install
LilyPond with your distribution’s package management system, or (on “OS X”) with a package manager such as
Homebrew. “Windows” users, and users who do not have a 2.16.x or 2.18.x version of LilyPond available from their
package manager, may download and install a pre-compiled version of LilyPond from their website, lilypond.org.

We very strongly discourage users from compiling LilyPond themselves. There is very little chance that the benefits
of self-compilation will outweigh the mental distress.

Programming Tutorials for VIS

Tutorial: Use N-Grams to Find Melodic Patterns

Once you understand our framework’s architecture (explained in Design Principles), you can design new queries to
answer your own questions.

Develop a Question

Our research question involves numerically comparing melodic styles of multiple composers. To help focus our
findings on the differences between composers, our test sets should consist of pieces that are otherwise as similar as
possible. One of the best ways to compare styles is using patterns, which are represented in the VIS Framework as
n-grams: a unit of n objects in a row. While the Framework’s n-gram functionality is fairly complex, in this tutorial
we will focus on simple n-grams of melodic intervals, which will help us find melodic patterns. The most frequently
occurring melodic patterns will tell us something about the melodic styles of the composers under consideration: we
will be pointed to some similarities and some differences that, taken together, will help us refine future queries.

Since n-grams are at the centre of the preliminary investigation described in this tutorial, we will use the corresponding
NGramIndexer to guide our development. We must answer two questions:

1. What data will the NGramIndexer require to find melodic patterns?

2. What steps are required after the NGramIndexer to produce meaningful results?

We investigate these two questions in the following sections.

What Does the NGramIndexer Require?

To begin, try reading the documentation for the NGramIndexer. At present, this Indexer is the most powerful and
most complicated module in the VIS Framework, and as such it may pose difficulties and behave in unexpected ways.
For this tutorial we focus on the basic functionality: the “n” and “vertical” settings.

TODO: continue revising here

For this simple preliminary investigation, we need only provide the melodic intervals of every part in an
IndexedPiece. The melodic intervals will be the “vertical” events; there will be no “horizontal” events. We
can change the “mark_singles” and “continuer” settings any time as we please. We will probably want to try many
different pattern lengths by changing the “n” setting. If we do not wish our melodic patterns to include rests, we can
set “terminator” to ['Rest'].

2.2. Programming Tutorials for VIS 11

https://www.lilypond.org


VIS Framework Documentation, Release 3.0.5

Thus the only information NGramIndexer requires from another analyzer is the melodic intervals, produced by
HorizontalIntervalIndexer, which will confusingly be the “vertical” event. As specified in its documen-
tation, the HorizontalIntervalIndexer requires the output of the NoteRestIndexer, which operates di-
rectly on the music21 Score.

The first part of our query looks like this:

1 from vis.analyzers.indexers import noterest, interval, ngram
2 from vis.models.indexed_piece import IndexedPiece
3

4 # prepare inputs and output-collectors
5 pathnames = [list_of_pathnames_here]
6 ind_ps = [IndexedPiece(x) for x in pathnames]
7 interval_settings = {'quality': True}
8 ngram_settings = {'vertical': 0, 'n': 3} # change 'n' as required
9 ngram_results = []

10

11 # prepare for and run the NGramIndexer
12 for piece in ind_ps:
13 intervals = piece.get_data([noterest.NoteRestIndexer, interval.

→˓HorizontalIntervalIndexer], interval_settings)
14 for part in intervals:
15 ngram_results.append(piece.get_data([ngram.NGramIndexer], ngram_settings,

→˓[part])

After the imports, we start by making a list of all the pathnames to use in this query, then use a Python list com-
prehension to make a list of IndexedPiece objcects for each file. We make the settings dictionaries to use for
the interval then n-gram indexers on lines 7 and 8, but note we have not included all possible settings. The empty
ngram_results list will store results from the NGramIndexer.

The loop started on line 12 is a little confusing: why not use an AggregatedPieces object to run the
NGramIndexer on all pieces with a single call to get_data()? The reason is the inner loop, started on line
14: if we run the NGramIndexer on an IndexedPiece once, we can only index a single part, but we want results
from all parts. This is the special burden of using the NGramIndexer, which is flexible but not (yet) intelligent.
In order to index the melodic intervals in every part using the get_data() call on line 15, we must add the nested
loops.

How Shall We Prepare Results?

For this analysis, I will simply count the number of occurrences of each harmonic interval pattern, which is
called the “frequency.” It makes sense to calculate each piece separately, then combine the results across pieces.
We’ll use the FrequencyExperimenter and ColumnAggregator experimenters for these tasks. The
FrequencyExperimenter counts the number of occurrences of every unique token in another index into a
pandas.Series, and the ColumnAggregator combines results across a list of Series or a DataFrame
(which it treats as a list of Series) into a single Series.

With these modifications, our program looks like this:

1 from vis.analyzers.indexers import noterest, interval, ngram
2 from vis.analyzers.experimenters import frequency, aggregator
3 from vis.models.indexed_piece import IndexedPiece
4 from vis.models.aggregated_pieces import AggregatedPieces
5 from pandas import DataFrame
6

7 # prepare inputs and output-collectors
8 pathnames = [list_of_pathnames_here]
9 ind_ps = [IndexedPiece(x) for x in pathnames]

12 Chapter 2. Table of Contents

http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame


VIS Framework Documentation, Release 3.0.5

10 interval_settings = {'quality': True}
11 ngram_settings = {'vertical': [0], 'n': 3} # change 'n' as required
12 ngram_freqs = []
13

14 # prepare for and run the NGramIndexer
15 for piece in ind_ps:
16 intervals = piece.get_data([noterest.NoteRestIndexer, interval.

→˓HorizontalIntervalIndexer], interval_settings)
17 for part in intervals:
18 ngram_freqs.append(piece.get_data([ngram.NGramIndexer, frequency.

→˓FrequencyExperimenter], ngram_settings, [part]))
19

20 # aggregate results of all pieces
21 agg_p = AggregatedPieces(ind_ps)
22 result = agg_p.get_data([aggregator.ColumnAggregator], [], {}, ngram_freqs)
23 result = DataFrame({'Frequencies': result})

The first thing to note is that I modified the loop from the previous step by adding the FrequencyExperimenter
to the get_data() call on line 18 that uses the NGramIndexer. As you can see, the aggregation step is actually
the easiest; it simply requires we create an AggregatedPieces object and call its get_data() method with the
appropriate input, which is the frequency data we collected in the loop.

On line 22, result holds a Series with all the information we need! To export your data to one of the supported
formats (CSV, Excel, etc.) you must create a DataFrame and use one of the methods described in the pandas docu-
mentation. The code on line 23 “converts” result into a DataFrame by giving the Series to the DataFrame
constructor in a dictionary. The key is the name of the column, which you can change to any value valid as a Python
dictionary key. Since the Series holds the frequencies of melodic interval patterns, it makes sense to call the col-
umn 'Frequencies' in this case. You may also wish to sort the results by running result.sort() before
you “convert” to a DataFrame. You can sort in descending order (with the most common events at the top) with
result.sort(ascending=False).

Next Steps

After the preliminary investigation, I would make my query more useful by using the “horizontal” and “vertical”
functionality of the NGramIndexer to coordinate disparate musical elements that make up melodic identity. Writing
a new Indexer to help combine melodic intervals with the duration of the note preceding the interval would be
relatively easy, since music21 knows the duration of every note. A more subtle, but possibly more informative, query
would combine melodic intervals with the scale degree of the preceding note. This is a much more complicated query,
since it would require an indexer to find the key at a particular moment (an extremely complicated question) and an
indexer that knows the scale degree of a note.

Tutorial: Use the WorkflowManager

The script developed in Tutorial: Use N-Grams to Find Melodic Patterns is suitable for users doing exploratory work
in an interactive Python shell. When a query becomes regularized and you want it to be easily repeatable, or if you
are an application developer making a graphical interface (whether on the Web or in a desktop application) you can
take advantage of a further layer of abstraction offered by our WorkflowManager. The WorkflowManager is
designed as the point of interaction for end-user applications, providing a consistent interface and reference imple-
mentations of the steps involved in all queries. While every new query will involve modifying a portion of the run()
method’s code, you may be able to re-use the existing input and output methods without change.

The WorkflowManager‘s documentation describes its functionality:

class vis.workflow.WorkflowManager(pathnames)
Warning: The WorkflowManager is deprecated as of VIS 3.0 and will be entirely removed in VIS 4.0. Most

2.2. Programming Tutorials for VIS 13

http://pandas.pydata.org/pandas-docs/stable/io.html
http://pandas.pydata.org/pandas-docs/stable/io.html


VIS Framework Documentation, Release 3.0.5

of its functionality still works with VIS 3.0 but this is not guaranteed and it is no longer being supported in
development.

Parameters pathnames (list or tuple of string or IndexedPiece) – A list of pathnames.

The WorkflowManager automates several common music analysis patterns for counterpoint. Use the
WorkflowManager with these four tasks:

•load(), to import pieces from symbolic data formats.

•run(), to perform a pre-defined analysis.

•output(), to output analysis results.

Before you analyze, you may wish to use these methods:

•metadata(), to get or set the metadata of a specific IndexedPiece managed by this
WorkflowManager.

•settings(), to get or set a setting related to analysis (for example, whether to display the quality of
intervals).

You may also treat a WorkflowManager as a container:

>>> wm = WorkflowManager(['piece1.mxl', 'piece2.krn'])
>>> len(wm)
2
>>> ip = wm[1]
>>> type(ip)
<class 'vis.models.indexed_piece.IndexedPiece'>

Port a Query into the WorkflowManager

Porting an existing query to the WorkflowManager involves fitting its code into the appropriate pre-existing meth-
ods. The load() method prepares IndexedPiece objects and metadata by loading files for analysis. The
output() method outputs query results to a variety of formats, including spreadsheets, charts, and scores. You
will not usually need to modify load(), and you may not need to modify output() either.

The majority of development work will be spent in the run() method or its related hidden methods (like the
_intervs(), _inteval_ngrams(), and other methods that are included in the default WorkflowManager).

TODO: continue revising here.

When I add my new query’s logic to the run() method, I get this:

1 def run(self):
2 ngram_settings = {'vertical': [0], 'n': self.settigns(None, 'n')}
3 ngram_freqs = []
4

5 for i, piece in enumerate(self._data):
6 interval_settings = {'quality': self.settings(i, 'interval quality')}
7 intervals = piece.get_data( \
8 [noterest.NoteRestIndexer, interval.HorizontalIntervalIndexer], \
9 interval_settings)

10 for part in intervals:
11 ngram_freqs.append( \
12 piece.get_data([ngram.NGramIndexer, frequency.FrequencyExperimenter],

→˓\
13 ngram_settings, \
14 [part]))
15

14 Chapter 2. Table of Contents



VIS Framework Documentation, Release 3.0.5

16 agg_p = AggregatedPieces(ind_ps)
17 self._result = agg_p.get_data([aggregator.ColumnAggregator], [], {}, ngram_freqs)

I made the following changes:

• Remove the instruction parameter from run(), since there is only one experiment.

• Use the import statements at the top of the file.

• Use self._data rather than building my own list of IndexedPiece objects (in enumerate() on line
5).

• Set interval_settings per-piece, and use the value from built-in WorkflowManager settings.

• Set n from the built-in WorkflowManager settings.

I could also use the WorkflowManager.settings() method to get other settings by piece or shared across all
pieces, like 'simple intervals', which tells the HorizontalIntervalIndexer whether to display all
intervals as their single-octave equivalents.

To run the same analysis as in Tutorial: Use N-Grams to Find Melodic Patterns, use the WorkflowManager like
this:

1 from vis.workflow import WorkflowManager
2

3 pathnames = [list_of_pathnames]
4 work = WorkflowManager(pathnames)
5 work.load('pieces')
6 for i in xrange(len(work)):
7 work.settings(i, 'quality', True)
8 work.run()
9 work.export('CSV', 'output_filename.csv')

This script actually does more than the program in Tutorial: Use N-Grams to Find Melodic Patterns because
export() “converts” the results to a DataFrame, sorts, and outputs the results.

API Specification

vis

analyzers Package

analyzers Package

Indexers produce an “index” of a symbolic musical score. Each index provides one type of data, and each event can
be attached to a particular moment in the original score. Some indexers produce their index directly from the score,
like the NoteRestIndexer, which describes pitches. Others create new information by analyzing another index,
like the IntervalIndexer, which describes harmonic intervals between two-part combinations in the score, or the
FilterByRepeatIndexer, which removes consecutive identical events, leaving only the first.

Analysis modules of the subclass Experimenter, by contrast, produce results that cannot be attached to a moment
in a score.

Indexers work only on single IndexedPiece instances. To analyze many IndexedPiece objects together, use
an experimenter with an AggregatedPieces object.

2.3. API Specification 15

https://docs.python.org/2.7/library/functions.html#enumerate
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame


VIS Framework Documentation, Release 3.0.5

experimenter Module

This module outlines the Experimenter base class, which helps with transforming time-attached analytic information
to other types.

class vis.analyzers.experimenter.Experimenter(index, settings=None)
Bases: object

Run an experiment on an IndexedPiece.

Use the “Experimenter.required_indices” attribute to know which Indexer subclasses should be provided to this
Experimenter’s constructor. If the list is None or [], use the “Experimenter.required_experiments” attribute to
know which Experimenter should be provided to the constructor.

default_settings = None

possible_settings = []

indexer Module

The controllers that deal with indexing data from music21 Score objects.

class vis.analyzers.indexer.Indexer(score, settings=None)
Bases: object

An object that manages creating an index of a piece, or part of a piece, based on one feature.

Use the required_score_type attribute to know what type of object is required in __init__().

The name of the indexer, as stored in the DataFrame it returns, is the module name and class name. For
example, the name of the IntervalIndexer is 'interval.IntervalIndexer'.

Caution: This module underwent significant changes for release 2.0.0. In particular, the constructor’s
score argument and the run() method’s return type have changed.

default_settings = {}
Described in the TemplateIndexer.

make_return(labels, indices)
Prepare a properly-formatted DataFrame as should be returned by any Indexer subclass. We intend
for this to be called by Indexer subclasses only.

The index of a label in labels should be the same as the index of the Series to which it corresponds
in indices. For example, if indices[12] is the tuba part, then labels[12] might say 'Tuba'.

Parameters

• labels (list of six.string_types) – Indices of the parts or the part combina-
tions, or another descriptive label as described in the indexer subclass documentation.

• indices (list of pandas.Series or a pandas.DataFrame) – The results of the
indexer.

Returns A DataFrame with the appropriate MultiIndex required by the Indexer.
run() method signature.

Return type pandas.DataFrame

Raises IndexError if the number of labels and indices does not match.

16 Chapter 2. Table of Contents

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#object
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.MultiIndex.html#pandas.MultiIndex
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame


VIS Framework Documentation, Release 3.0.5

possible_settings = {}
Described in the TemplateIndexer.

required_score_type = None
Described in the TemplateIndexer.

run()
Make a new index of the piece.

Returns The new indices. Refer to the section below.

Return type pandas.DataFrame

About Return Values:

Every indexer must return a DataFrame with a special kind of MultiIndex that helps organize
data across multiple indexers. Programmers making a new indexer should follow the instructions in the
TemplateIndexer run() method to ensure this happens properly.

Indexers return a DataFrame where the columns are indexed on two levels: the first level is a string with
the name of the indexer, and the second level is a string with the index of the part, the indices of the parts
in a combination, or some other value as specified by the indexer.

This allows, for example:

>>> the_score = music21.converter.parse('sibelius_5-i.mei')
>>> the_score.parts[5]
(the first clarinet Part)
>>> the_notes = NoteRestIndexer(the_score).run()
>>> the_notes['noterest.NoteRestIndexer']['5']
(the first clarinet Series)
>>> the_intervals = IntervalIndexer(the_notes).run()
>>> the_intervals['interval.IntervalIndexer']['5,6']
(Series with vertical intervals between first and second clarinet)

This is more useful when you have a larger DataFrame with the results of multiple indexers. Refer to
Indexer.combine_results() to see how that works.

>>> some_results = Indexer.combine_results([the_notes, the_intervals])
>>> some_results['noterest.NoteRestIndexer']['5']
(the first clarinet Series)
>>> some_results['interval.IntervalIndexer']['5,6']
(Series with vertical intervals between first and second clarinet)
>>> some_results.to_hdf('brahms3.h5', 'table')

After the call to to_hdf(), your results are stored in the ‘brahms3.h5’ file. When you load them (very
quickly!) with the read_hdf() method, the DataFrame returns exactly as it was.

Note: In release 1.0.0, it was sometimes acceptable to use undocumented return values; from release
1.1.0, this is no longer necessary, and you should avoid it. In a future release, the IndexedPiece class
will depend on indexers following these rules.

vis.analyzers.indexer.series_indexer(parts, indexer_func)
Perform the indexation of a part or part combination. This is a module-level function designed to ease imple-
mentation of multiprocessing.

If your Indexer has settings, use the indexer_func() to adjust for them.

Parameters

2.3. API Specification 17

http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.to_hdf.html#pandas.DataFrame.to_hdf
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.read_hdf.html#pandas.read_hdf


VIS Framework Documentation, Release 3.0.5

• parts (list of pandas.Series) – A list of at least one Series object. Every new
event, or change of simlutaneity, will appear in the outputted index. Therefore, the new
index will contain at least as many events as the inputted Series with the most events.
This is not a DataFrame, since each part will likely have different offsets.

• indexer_func (function) – This function transforms found events into some other
string.

Returns The pipe_index argument and the new index. The new index is a pandas.
Series where every element is a string. The Index of the Series corresponds to the
quarterLength offset of the event in the inputted Stream.

Return type 2-tuple of object and pandas.Series

Raises ValueError if there are multiple events at an offset in any of the inputted Series.

Subpackages

experimenters Package

experimenters Package

aggregator Module

Aggregating experimenters.

class vis.analyzers.experimenters.aggregator.ColumnAggregator(index, set-
tings=None)

Bases: vis.analyzers.experimenter.Experimenter

(Arguments for the constructor are listed below).

Experiment that aggregates data from columns of a DataFrame, or a list of DataFrame objects, by summing
each row. Values from columns named 'all' will not be included in the aggregated results. You may provide
a 'column' setting to guide the experimenter to include only certain results.

Example 1

Inputting single DataFrame like this:

Index piece_1 piece_2
M3 12 24
m3 NaN 36
P5 3 9

Yields this DataFrame:

Index ‘aggregator.ColumnAggregator’
M3 36
m3 36
P5 12

Example 2

Inputting two DataFrame objects is similar.

Index piece_1
M3 12
P5 3

18 Chapter 2. Table of Contents

http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series


VIS Framework Documentation, Release 3.0.5

Index piece_2
M3 24
m3 36
P5 9

The result is the same DataFrame:

Index ‘aggregator.ColumnAggregator’
M3 36
m3 36
P5 12

Example 3

You may also give a DataFrame (or a list of DataFrame objects) that have a pandas.MultiIndex as
produced by subclasses of Indexer. In this case, use the 'column' setting to indicate which indexer’s results
you wish to aggregate.

Index ‘frequency.FrequencyExperimenter’ ‘feelings.FeelingsExperimenter’
‘0,1’ ‘1,2’ ‘Christopher’ ‘Alex’

M3 12 24 ‘delight’ ‘exuberance’
m3 NaN 36 ‘sheer joy’ ‘nonchalance’
P5 3 9 ‘emptiness’ ‘serenity’

If 'column' is 'frequency.FrequencyExperimenter', yet again you will have this DataFrame:

Index ‘aggregator.ColumnAggregator’
M3 36
m3 36
P5 12

default_settings = {‘column’: None}

possible_settings = [’column’]

Parameters 'column' (str) – The column name to use for aggregation. The default is None,
which aggregates across all columns. If you set this to 'all', it will override the default
behaviour of not including columns called 'all'.

run()
Run the ColumnAggregator experiment.

Returns A Series with an index that is the combination of all indices of the provided pandas
objects, and the value is the sum of all values in the pandas objects.

Return type pandas.Series

*Example:*

import music21 from vis.analyzers.indexers import noterest from vis.analyzers.experimenters import ag-
gregator, frequency

score = music21.converter.parse(‘example.xml’) notes = noterest.NoteRestIndexer(score).run()

freqs = frequency.FrequencyExperimenter(notes).run() agg = aggregator.ColumnAggregator(freqs).run()
print(agg)

frequency Module

Experimenters that deal with the frequencies (number of occurrences) of events.

2.3. API Specification 19

http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.MultiIndex.html#pandas.MultiIndex
https://docs.python.org/2.7/library/functions.html#str
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series


VIS Framework Documentation, Release 3.0.5

class vis.analyzers.experimenters.frequency.FrequencyExperimenter(index, set-
tings=None)

Bases: vis.analyzers.experimenter.Experimenter

Calculate the number of occurrences of objects in an index.

Use the 'column' setting to choose only the results of one previous analyzer. For example, if you wanted
to calculate the frequency of vertical intervals, you would specify 'interval.IntervalIndexer'. This
would avoid counting, for example, the horizontal intervals if they were also present.

default_settings = {‘column’: None}

possible_settings = [’column’]

Parameters 'column' (str) – The column name to use for counting frequency. The default
is None, which counts all columns. Use this to count only the frequency of one previous
analyzer.

run()
Run the FrequencyExperimenter.

Returns The result of the experiment. Data is stored such that column labels correspond to the
part (combinations) totalled in the column, and row labels correspond to a type of the kind of
objects found in the given index. Note that all columns are totalled in the “all” column, and
that not every part combination will have every interval; in case an interval does not appear
in a part combination, the value is numpy.NaN.

Return type list of pandas.DataFrame

*Example:*

import music21 from vis.analyzers.indexers import noterest from vis.analyzers.experimenters import fre-
quency

score = music21.converter.parse(‘example.xml’) notes = noterest.NoteRestIndexer(score).run()

freqs = frequency.FrequencyExperimenter(notes).run() print(freqs)

barchart Module

The experimenters in this module all generate bar charts. Currently the only class is RBarChart, which uses
Rscript to run a script in the R programming language.

class vis.analyzers.experimenters.barchart.RBarChart(index, settings=None)
Bases: vis.analyzers.experimenter.Experimenter

Use Rscript to run a bar-chart-generating script in the R programming language.

OUTPUT_TYPES = (‘eps’, ‘ps’, ‘tex’, ‘pdf’, ‘jpeg’, ‘tiff’, ‘png’, ‘bmp’, ‘svg’)
R additionally supports the 'wmf' format, which is for Windows only. However, since VIS will likely
never run on Windows, and since Windows also supports all the other formats, we do not allow 'wmf' in
this experimenter.

RSCRIPT_PATH = ‘/usr/bin/Rscript’
Full pathname to the Rscript program. If this doesn’t work on your system, you’ll have a hard time
getting RbarChart to work.

default_settings = {‘column’: ‘freq’, ‘token’: ‘objects’, ‘type’: ‘png’, ‘nr_pieces’: None}
Deafult values for the optional settings.

20 Chapter 2. Table of Contents

https://docs.python.org/2.7/library/functions.html#str
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame


VIS Framework Documentation, Release 3.0.5

possible_settings = (‘pathname’, ‘column’, ‘type’, ‘token’, ‘nr_pieces’)
Only the 'pathname' setting is required. For default values, refer to the descriptions below and the
values in default_settings.

Parameters

• 'pathname' (str) – The pathname to use for the outputted file.

• 'column' (str) – The column of the DataFrame to choose for outputting. If the data
you wish to include in the chart is not in the 'freq' column, use this setting to determine
which column is used instead.

• 'type' (str) – The output type, chosen from OUTPUT_TYPES.

• 'token' (str) – The “token” to pass onto the bar chart script, telling it what type of
object is being displayed. This should either be a string ending with '-gram', the word
'interval' or 'objects', which is the default. Refer to the note below.

• 'nr_pieces' (str or int) – The number of pieces whose results are represented
in the outputted chart. If present, the R script uses this to write “for X pieces” in the chart’s
title. The default is None, which does not include this statement.

Note: About the 'token' Setting.

The 'token' setting is modified and sent forward to the R script, which uses it to determine the type of
object portrayed on the chart. If the token is set to 'interval', the R script will print that “Intervals” are
being displayed; if the token is set to a string ending with '-gram', the script will print that whatever-
grams are being displayed; if the token is set to None, the script will print that “Objects” are being
displayed.

run()
Produce the bar chart.

Returns The pathname of the outputted PNG file containing a bar chart.

Return type string

Raises RuntimeError if the call to Rscript fails for any reason. The return code and
command’s output are included as the RuntimeError.args[0] attribute.

lilypond Module

template Module

Template for writing a new experimenter. Use this class to help write a new :class‘Experimenter‘ subclass. The
TemplateExperimenter does nothing, and should only be used by programmers.

class vis.analyzers.experimenters.template.TemplateExperimenter(index, set-
tings=None)

Bases: vis.analyzers.experimenter.Experimenter

Template for an Experimenter subclass.

default_settings = {}
The default values for settings named in possible_settings. If a setting doesn’t have a value in
this constant, then it must be specified to the constructor at runtime, or the constructor should raise a
RuntimeException.

2.3. API Specification 21

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/string.html#module-string


VIS Framework Documentation, Release 3.0.5

possible_settings = [’fake_setting’]
This is a list of strings that are the names of the settings used in this experimenter. Specify the types and
reasons for each setting as though it were an argument list, like this:

Parameters 'fake_setting' (boolean) – This is a fake setting.

run()
Run an experiment on a piece.

Returns The result of the experiment. Each experiment should describe its data storage.

Return type pandas.Series or pandas.DataFrame

indexers Package

indexers Package

active_voices Module

class vis.analyzers.indexers.active_voices.ActiveVoicesIndexer(score, set-
tings=None)

Bases: vis.analyzers.indexer.Indexer

Indexer that counts the number of voices active at each offset. It can either find all voices sounding, or only the
voices that are attacking, depending on the settings passed.

Call this indexer via the get_data() method of either an indexed_piece object or an
aggregated_pieces object (see example below). If nothing is passed in the ‘data’ argument of the call
to get_data(), then the default is to process the NoteRestIndexer results of the indexed_piece in
question. You can pass some other DataFrame in the ‘data’ argument, but it is discouraged.

Parameters

• 'attacked' (boolean) – When true, only counts the voices that are attacking at each
offset. Defaults to false.

• 'show_all' (boolean) – When true, shows the results at all offsets, even if there is not
change. Defaults to false.

Examples:

Prepare an indexed piece:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('path_to_piece.xml')

Get the ActiveVoicesIndexer results with the default settings:

>>> ip.get_data('active_voices')

Get the ActiveVoicesIndexer results with specified settings:

>>> av_setts = {
'attacked': True,
'show_all': True

}
>>> ip.get_data('active_voices', settings=av_setts)

default_settings = {‘show_all’: False, ‘attacked’: False}

22 Chapter 2. Table of Contents

http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame


VIS Framework Documentation, Release 3.0.5

possible_settings = [’attacked’, ‘show_all’]

required_score_type = ‘pandas.DataFrame’

run()

Returns new index of the active voices in the piece.

Return type pandas.DataFrame

vis.analyzers.indexers.active_voices.indexer1(x)
Used internally by the ActiveVoicesIndexer to count individualevents.

cadence Module

class vis.analyzers.indexers.cadence.CadenceIndexer(score, settings=None)
Bases: vis.analyzers.indexer.Indexer

Using OverBassIndexer and FermataIndexer results, finds cadences as lists of events in the approach
to a fermata.

Call this indexer via the get_data() method of either an indexed_piece object or an
aggregated_pieces object (see example below).

Parameters

• 'length' (int) – The length of the cadence, or how many events happen before a fer-
mata.

• 'voice' (str or int) – The voice in which you want to look for fermatas. The default
value for this is ‘all’.

Example:

Prepare an indexed piece and import pandas:

>>> from vis.models.indexed_piece import Importer
>>> import pandas
>>> ip = Importer('path_to_piece.xml')

Prepare OverBassIndexer and FermataIndexer results. For more specific advice on how to do this,
please see the documentation of those two indexers. These two DataFrames should be passed as a list. For
simplicity, including the FermataIndexer results is optional, and this example shows how to use the
CadenceIndexer without explicitly providing the FermataIndexer results, so the ‘data’ argument is
a singleton list.

>>> overbass_input_dfs = [ip.get_data('noterest'),
ip.get_data('vertical_interval')]

>>> ob_setts = {
'type': 'notes'

}
>>> overbass = ip.get_data('over_bass', data=overbass_input_dfs,

settings=ob_setts)

Get the CadenceIndexer results with specified settings:

>>> ca_setts = {'length': 3}
>>> ip.get_data('cadence', data=[overbass], settings=ca_setts)

possible_settings = [’length’, ‘voice’]

2.3. API Specification 23

http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int


VIS Framework Documentation, Release 3.0.5

required_score_type = ‘pandas.DataFrame’

run()
Makes a new index of the cadences in the piece.

Returns A DataFrame of the cadences.

Return type pandas.DataFrame

contour Module

vis.analyzers.indexers.contour.COM_matrix(contour)
Creates a matrix representing the contour given.

class vis.analyzers.indexers.contour.ContourIndexer(score, settings=None)
Bases: vis.analyzers.indexer.Indexer

Indexes the contours of a given length in a piece, where contour is a way of numbering the relative heights of
pitches, beginning at 0 for the lowest pitch.

Call this indexer via the get_data() method of either an indexed_piece object or an
aggregated_pieces object (see example below). If nothing is passed in the ‘data’ argument of the call
to get_data(), then the default is to process the NoteRestIndexer results of the indexed_piece in
question. You can pass some other DataFrame to the ‘data’ argument, but it is discouraged.

Parameters 'length' (int) – This is the length of the contour you want to look at.

Example:

Prepare an indexed piece:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('path_to_piece.xml')

Get the ContourIndexer results with specified settings and processing the notes and rests:

>>> notes = ip.get_data('noterest')
>>> contour_setts = {'length': 3}
>>> ip.get_data('contour', data=notes, settings=contour_setts)

possible_settings = [’length’]

required_score_type = ‘pandas.DataFrame’

run()
Makes a new index of the contours in the piece.

Returns A DataFrame of the contours.

Return type pandas.DataFrame

vis.analyzers.indexers.contour.compare(contour1, contour2)
Additional method to compare COM_matrices.

vis.analyzers.indexers.contour.getContour(notes)
Method used internally by the ContourIndexer class to convert pitches into contour numbers.

24 Chapter 2. Table of Contents

http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/2.7/library/functions.html#int
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame


VIS Framework Documentation, Release 3.0.5

dissonance Module

class vis.analyzers.indexers.dissonance.DissonanceIndexer(score, settings=None)
Bases: vis.analyzers.indexer.Indexer

Indexer that locates vertical dissonances between pairs of voices in a piece. It then categorizes intervals as
consonant or dissonant and in the case of fourths (perfect or augmented) and diminished fifths it examines the
other parts sounding with that fourth or fifth (if there are any) to see if the interval can be considered consonant.
This dissonance analysis allows for the assignment of a dissonance type name or a consonance label for each
voice at each offset. This last step is the DataFrame that gets returned.

The score type must be a list of dataframes of the results of the following indexers (order matters): beat-
strength, duration, horizontal, vertical. To simplify things, however, it is better to use the get_data() on an
indexed_piece object to get results from the dissonance indexer as per the example below.

The results of the disonance indexer are in the form of one cell in the resultant dataframe in each part at every
offset where there is a new note, rest, or chord onset in any part. These cells contain one-character strings which
are an abbreviation of what the dissonance type for that part at that moment is. The abbreviations correspoond
to the following dissonance types:

•‘Q’: Dissonant third quarter (special type of accented passing tone)

•‘D’: Descending passing tone

•‘R’: Ascending (“rising”) passing tone

•‘L’: Lower neighbour

•‘U’: Upper neighbour

•‘S’: Suspension

•‘F’: Fake suspension

•‘f’: Diminished fake suspension

•‘A’: Anticipation

•‘C’: Nota cambiata

•‘H’: Chanson idiom

•‘E’: Echappée (escape tone)

•‘-‘: Either no dissonance, or the part in question is not considered to be the dissonant note of the dis-
sonance it’s in

Example:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('symbolic_notation_file_location.xml')
>>> ip.get_data('dissonance')

check_4s_5s(pair_name, iloc_indx, suspect_diss, simuls)
This function evaluates whether P4’s, A4’s, and d5’s should be considered consonant based whether or not
the lower voice of the suspect_diss forms an interval that causes us to deem the fourth or fifth consonant,
as determined by the cons_makers list below. The function should be called once for each potentially
consonant fourth or fifth.

Parameters

• pair_name (String in the format '0,2' if the pair in
question is S and T in an SATB texture.) – Name of pair that has
the potentially consonant fourth or fifth.

2.3. API Specification 25



VIS Framework Documentation, Release 3.0.5

• iloc_indx (Integer.) – Pandas iloc number of interval’s row in dataframe.

• suspect_diss (String.) – Interval name with quality and direction (i.e. nothing or
‘-‘) that corresponds to the fourth or fifth to be examined.

Returns string representing analysis of fourth or fifth in question where a ‘C’ or ‘D’ has been
prepended to the interval name with quality to show that it was considered consonant or
dissonant respectively.

Return type string

classify(indx, pair, event, prev_event)
Checks the dissonance definitions to find a suitable label for the dissonance passed. If no identifiable
dissonance type matches, returns an unknown dissonance label. Omits checking the pair if either voice
was previously given a known dissonance label still in vigour at the given offset. It only takes its four
arguments to pass them on to the dissonance-type functions it calls.

Returns A 5-tuple that can be unpacked to assign separate labels for each voice in the pair. If
none of the known dissonance types were detected the 5-tuple will have the labels to mark
one or both of the voices as dissonant.

Return type tuple

required_score_type = ‘pandas.DataFrame’

run()
Make a new index of the piece which consists of a DataFrame with as many columns as there are voices
in the piece. The index is the offset of the dissonance analyses. Another DataFrame (diss_ints)
is calculated but not returned. It is in the same format as the IntervalIndexer (i.e. a DataFrame of
Series where each series corresponds to the intervals in a given voice pair). The difference between this and
the interval indexer is that this one figures out whether fourths or diminished fifths should be considered
consonant for the purposes of dissonance classification. diss_ints is not calculated separately because it
essentially consists of the same loop needed for dissonance classification.

Returns A DataFrame of the new indices. The columns have a MultiIndex.

Return type pandas.DataFrame

fermata Module

Index fermatas.

class vis.analyzers.indexers.fermata.FermataIndexer(score, settings=None)
Bases: vis.analyzers.indexer.Indexer

Index Fermata.

Finds :class:‘~music21.expressions.Fermata‘s.

Example:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('pathnameToScore.xml')
>>> ip.get_data('fermata')

required_score_type = ‘stream.Part’

vis.analyzers.indexers.fermata.indexer_func(event)
Used internally by FermataIndexer. Inspects

Note and Rest and returns u'Fermata' if a fermata is associated, else NaN.

26 Chapter 2. Table of Contents

https://docs.python.org/2.7/library/string.html#module-string
https://docs.python.org/2.7/library/functions.html#tuple
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame
http://web.mit.edu/music21/doc/moduleReference/moduleExpressions.html#music21.expressions.Fermata
http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Note
http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Rest


VIS Framework Documentation, Release 3.0.5

Parameters event (iterable of music21.note.Note or music21.note.Rest) – An iter-
able (nominally a Series) with an object to convert. Only the first object in the iterable is
processed.

Returns If the first object in the list is a contains a Fermata, string u'Fermata' is returned.
Else, NaN.

Return type str

interval Module

Index intervals. Use the IntervalIndexer to find vertical (harmonic) intervals between two parts. Use the
HorizontalIntervalIndexer to find horizontal (melodic) intervals in the same part.

class vis.analyzers.indexers.interval.HorizontalIntervalIndexer(score, set-
tings=None)

Bases: vis.analyzers.indexers.interval.IntervalIndexer

Use music21.interval.Interval to create an index of the horizontal (melodic) intervals in a single
part. You should provide the result of NoteRestIndexer. Alternatively you could provide the results of
the :class:’~vis.analyzers.offset.FilterByOffsetIndexer’ if you want to check for horizontal intervals at regular
durational intervals. These settings apply to the HorizontalIntervalIndexer in addition to the settings
available from the IntervalIndexer.

Parameters

• 'simpleor compound' (str) – Whether intervals should be represented in their
single-octave form (either 'simple' or 'compound').

• or string 'quality' (bool) – Whether to display diatonic intervals without quality
(either False or “diatonic no quality”), diatonic intervals with quality (either True or ‘dia-
tonic with quality’), chromatic intervals (use ‘chromatic’), or interval class intervals (use
‘interval class’).

• 'directed' (boolean) – Whether we distinguish between which note is higher than
the other. If True (default), prepends a ‘-‘ before everything else if the first note passed is
higher than the second.

• 'horiz_attach_later' (boolean) – If True, the offset for a horizontal interval is
the offset of the later note in the interval. The default is False, which gives horizontal
intervals the offset of the first note in the interval.

• 'mp' (boolean) –

Multiprocesses when True (default) or processes serially when False.

Example:

>>> from vis.models.indexed_piece import Importer
>>> settings = {

'quality': 'interval class',
'simple or compound': 'simple',
'directed': False

}
>>> ip = Importer('pathnameToScore.xml')
>>> ip.get_data('horizontal_interval', settings)

default_settings = {‘directed’: True, ‘simple or compound’: ‘compound’, ‘horiz_attach_later’: False, ‘quality’: False, ‘mp’: True}

run()
Make a new index of the piece.

2.3. API Specification 27

http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Note
http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Rest
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series
http://web.mit.edu/music21/doc/moduleReference/moduleExpressions.html#music21.expressions.Fermata
https://docs.python.org/2.7/library/functions.html#str
http://web.mit.edu/music21/doc/moduleReference/moduleInterval.html#music21.interval.Interval
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool


VIS Framework Documentation, Release 3.0.5

Returns The new indices. Refer to the example below.

Return type pandas.DataFrame

class vis.analyzers.indexers.interval.IntervalIndexer(score, settings=None)
Bases: vis.analyzers.indexer.Indexer

Use music21.interval.Interval to create an index of the vertical (harmonic) intervals between two-
part combinations.

You should provide the result of the NoteRestIndexer. However, to increase your flexibility, the con-
structor requires only a list of Series. You may also provide a DataFrame exactly as outputted by the
NoteRestIndexer. The settings for the IntervalIndexer are as follows:

Parameters

• 'simpleor compound' (str) – Whether intervals should be represented in their
single-octave form (either 'simple' or 'compound').

• or string 'quality' (bool) – Whether to display diatonic intervals without quality
(either False or “diatonic no quality”), diatonic intervals with quality (either True or ‘dia-
tonic with quality’), chromatic intervals (use ‘chromatic’), or interval class intervals (use
‘interval class’).

• 'directed' (boolean) – Whether we distinguish between which note is higher than
the other. If True (default), prepends a ‘-‘ before everything else if the first note passed is
higher than the second.

• 'mp' (boolean) – Multiprocesses when True (default) or processes serially when False.

Example:

>>> from vis.models.indexed_piece import Importer
>>> settings = {

'quality': 'chromatic',
'simple or compound': 'simple',
'directed': True

}
>>> ip = Importer('pathnameToScore.xml')
>>> ip.get_data('vertical_interval', settings)

default_settings = {‘directed’: True, ‘simple or compound’: ‘compound’, ‘quality’: False, ‘mp’: True}

required_score_type = ‘pandas.DataFrame’

run()
Make a new index of the piece.

Returns A DataFrame of the new indices. The columns have a MultiIndex; refer to the
example below for more details.

Return type pandas.DataFrame

class vis.analyzers.indexers.interval.IntervalReindexer(score, settings=None)
Bases: vis.analyzers.indexers.interval.HorizontalIntervalIndexer

This indexer is only meant to ever be called indirectly to simplify caching of the results of the IntervalIndexer
and the HorizontalIntervalIndexer. It takes the most information-rich type of interval analysis we
offer (i.e. compound, directed intervals with diatonic quality) and re-indexes them to match whatever settings
the user has requested. This is much faster, because it takes an entire interval as its input, rather than two notes,
and therefore there are considerably fewer memos in its memoization scheme.

run()

28 Chapter 2. Table of Contents

http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame
http://web.mit.edu/music21/doc/moduleReference/moduleInterval.html#music21.interval.Interval
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#bool
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame


VIS Framework Documentation, Release 3.0.5

meter Module

Indexers for metric concerns.

class vis.analyzers.indexers.meter.DurationIndexer(score, part_streams)
Bases: vis.analyzers.indexer.Indexer

Make an index of the durations of all Note, Rest, and Chord objects. These are calculated based on the
difference in index positions of consecutive events.

Note: Unlike nearly all other indexers, this indexer returns a Series of float objects rather than unicode
objects. Also unlike most other indexers, this indexer does not have an indexer func.

Example:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('pathnameToScore.xml')
>>> ip.get_data('duration')

required_score_type = ‘pandas.DataFrame’

run()
Make a new index of the piece.

Returns The new indices of the durations of each note or rest event in a score. Note that each
item is a float, rather than the usual basestring.

Return type pandas.DataFrame

class vis.analyzers.indexers.meter.MeasureIndexer(score)
Bases: vis.analyzers.indexer.Indexer

Make an index of the measures in a piece. Time signatures changes do not cause a problem. Note that unlike
most other indexers this one returns integer values >= 0. Using music21’s part.measureTemplate() function is
an alternative but it turned out to be much less efficient to looping over the piece and doing it this way makes
this indexer just like all the other stream indexers in VIS.

Example:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('pathnameToScore.xml')
>>> ip.get_data('measure')

required_score_type = ‘pandas.DataFrame’

class vis.analyzers.indexers.meter.NoteBeatStrengthIndexer(score)
Bases: vis.analyzers.indexer.Indexer

Make an index of the beatStrength for all Note, Rest, and Chord objects.

Note: Unlike nearly all other indexers, this indexer returns a Series of float objects rather than unicode
objects.

Example:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('pathnameToScore.xml')
>>> ip.get_data('beat_strength')

2.3. API Specification 29

http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame
http://web.mit.edu/music21/doc/moduleReference/moduleBase.html#music21.base.Music21Object.beatStrength


VIS Framework Documentation, Release 3.0.5

required_score_type = ‘pandas.DataFrame’

vis.analyzers.indexers.meter.beatstrength_ind_func(event)
Used internally by NoteBeatStrengthIndexer. Convert Note and Rest objects into a string.

Parameters event – A music21 note, rest, or chord object which get queried for its beat strength.
:type event: A music21 note, rest, or chord object or NaN.

Returns The beatStrength of the event which is dependent on the prevailing time signature.

Return type float

vis.analyzers.indexers.meter.measure_ind_func(event)
The function that indexes the measure numbers of each part in a piece. Unlike most other indexers, this one
returns int values. Measure numbering starts from 1 unless there is a pick-up measure which gets the number 0.
This can handle changes in time signature without problems.

Parameters event (A music21 measure object or NaN.) – A music21 measure object
which get queried for its “number” attribute.

Returns The number attribute of the passed music21 measure.

Return type int

ngram Module

Indexer to find k-part any-object n-grams. This file is a re-implimentation of the previous ngram_indexer.py file.

class vis.analyzers.indexers.ngram.NGramIndexer(score, settings=None)
Bases: vis.analyzers.indexer.Indexer

Indexer that finds k-part n-grams from other indices.

The indexer requires at least one “vertical” index, and supports “horizontal” indices that seem to “connect”
instances in the vertical indices. Although we use “vertical” and “horizontal” to describe these index types,
because the class is an abstraction of two-part interval n-grams, you can supply any information as either type of
index. If you want one-part melodic n-grams for example, you should supply the relevant interval information
as the “vertical” component. The “vertical” and “horizontal” indices can contain an arbitrary number of obser-
vations that can get condensed into one value or kept separate in different columns. There is no relationship
between the number of index types, though there must be at least one “vertical” index.

The 'vertical' and 'horizontal' settings determine which columns of the dataframes in score are
included in the n-gram output. score is a list of two dataframes, the vertical observations DataFrame and
the horizontal observations DataFrame.

The format of the vertical and horizontal settings is very important and will decide the structure of the resulting
n-gram results. Both the vertical and horizontal settings should be a list of tuples. If the optional horizontal
setting is passed, its list should be of the same length as that of the vertical setting. Inside of each tuple, enter
the column names of the observations that you want to include in each value. For example, if you want to
make 3-grams of notes in the tenor in a four-voice choral, use the following settings (NB: there is no horizontal
element in this simple query so no horizontal setting is passed. In this scenario you would need to pass the
noterest indexer results as the only dataframe in the “score” list of dataframes.):

>>> settings = {
'n': 3,
'vertical': [('2',)]

}

If you want to look at the 4-grams in the interval pairs between the bass and soprano of a four-voice
choral and track the melodic motions of the bass, the score argument should be a 2-item list containing

30 Chapter 2. Table of Contents

http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Note
http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Rest
http://web.mit.edu/music21/doc/moduleReference/moduleBase.html#music21.base.Music21Object.beatStrength
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#int


VIS Framework Documentation, Release 3.0.5

the IntervalIndexer results dataframe and the HorizontalIntervalIndexer dataframe. Note that the
HorizontalIntervalIndexer results must have been calculated with the 'horiz_attach_later'
setting set to True (this is in order to avoid an indexing nightmare). The settings dictionary to pass to this
indexer would be:

>>> settings = {
'n': 4,
'vertical': [('0,3',)],
'horizontal': [('3',)]

}

If you want to get ‘figured-bass’ 2-gram output from this same 4-voice choral, use the same 2-item list for the
score argument, and then put all of the voice pairs that sound against the bass in the same tuple in the vertical
setting. Here’s what the settings should be:

>>> settings = {
'n': 2,
'vertical': [('0,3', '1,3', '2,3')],
'horizontal': [('3',)]

}

In the example above, if you wanted stacks of vertical events without the horizontal connecting events, you
would just omit the 'horizontal' setting from the settings dictionary and also only include the vertical
observations in the score list of dataframes.

If instead you want to look at all the pairs of voices in the 4-voice piece, and always track the melodic motions
of the lowest voice in that pair, then put each pair in a different tuple, and in the voice to track melodically in the
corresponding tuple in the horizontal list. Since there are 6 pairs of voices in a 4-voice piece, both your vertical
and horizontal settings should be a list of six tuples. This will cause the resulting n-gram results dataframe to
have six columns of observations. Your settings should look like this:

>>> settings = {
'n': 2, 'vertical': [

('0,1',),
('0,2',),
('0,3',),
('1,2',),
('1,3',),
('2,3')

],
'horizontal': [

('1',),
('2',),
('3',),
('2',),
('3',),
('3',)

]
}

Since we often want to look at all the pairs of voices in a piece, you can set the 'vertical' setting to 'all'
and this will get all the column names from the first dataframe in the score list of dataframes. Similarly, as
we often want to always track the melodic motions of the lowest or highest voice in the vertical groups, the
horizontal setting can be set to 'highest' or 'lowest' to automate this voice selection. This means that
the preceeding query can also be accomplished with the following settings:

>>> settings = {
'n': 2,

2.3. API Specification 31



VIS Framework Documentation, Release 3.0.5

'vertical': 'all',
'horizontal': 'lowest'

}

The 'brackets' setting will set off all the vertical events at each time point in square brackets ‘[]’ and hori-
zontal observations will appear in parentheses ‘()’. This is particularly useful if there are multiple observations
in each vertical or horizontal slice. For example, if we wanted to redo the query above where n = 4, but this time
tracking the melodic motions of both the upper and the lower voice, it would be a good idea to set ‘brackets’ to
True to make the results easier to read. The settings would look like this:

>>> settings = {
'n': 4,
'vertical': [('0,3',)],
'horizontal': [('0', '3',)],
'brackets': True

}

If you want n-grams to terminate when finding one or several particular values, you can specify this by passing
a list of strings as the 'terminator' setting.

To show that a horizontal event continues, we use '_' by default, but you can set this separately, for example
to 'P1' '0', as seems appropriate.

Once you’ve chosen the appropriate settings, to actually run the indexer call it like this:

Example:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('pathnameToScore.xml')
>>> ngram_settings = {

'n': 2,
'vertical': 'all',
'horizontal': 'lowest'

}
>>> vert_settings = {

'quality': 'chromatic',
'simple or compound': 'simple',
'directed': True

}
>>> horiz_settings = {

'quality': 'diatonic with quality',
'simple or compound': 'simple',
'directed': True,
'horiz_attach_later': True

}
>>> vert_ints = ip.get_data('vertical_interval', settings=vert_settings)
>>> horiz_ints = ip.get_data('horizontal_interval', settings=horiz_settings)
>>> ip.get_data('ngram', data=[vert_ints, horiz_ints], settings=ngram_settings)

default_settings = {‘open-ended’: False, ‘vertical’: ‘all’, ‘brackets’: True, ‘continuer’: ‘_’, ‘terminator’: [], ‘horizontal’: [], ‘align’: ‘left’}

possible_settings = [’horizontal’, ‘vertical’, ‘n’, ‘open-ended’, ‘brackets’, ‘terminator’, ‘continuer’, ‘align’]
A list of possible settings for the NGramIndexer.

Parameters

• 'horizontal' (list of tuples of strings, default []) – Selectors
for the columns to consider as “horizontal.”

32 Chapter 2. Table of Contents



VIS Framework Documentation, Release 3.0.5

• 'vertical' (list of tuples of strings, default 'all'.) – Selec-
tors for the column names to consider as “vertical.”

• 'n' (int) – The number of “vertical” events per n-gram.

• 'open-ended' (boolean, default False.) – Appends the next horizontal observation
to n-grams leaving them open-ended.

• 'brackets' (bool, default True.) – Whether to use delimiters around event
observations. Square brakets [] are used to set off vertical events and round brackets () are
used to set off horizontal events. This is particularly important to leave as True (default)
for better legibility when there are multiple vertical or multiple horizontal observations at
each slice.

• 'terminator' (list of str, default []) – Do not find an n-gram with a
vertical item that contains any of these values.

• 'continuer' (str, default '_'.) – When there is no “horizontal” event that
corresponds to a vertical event, this is printed instead, to show that the previous “horizon-
tal” event continues.

required_score_type = ‘pandas.DataFrame’

run()
Make an index of k-part n-grams of anything.

Returns A new index of the piece in the form of a class:~pandas.DataFrame with as many
columns as there are tuples in the ‘vertical’ setting of the passed settings.

noterest Module

Index note and rest objects into pandas DataFrame(s).

class vis.analyzers.indexers.noterest.MultiStopIndexer(score)
Bases: vis.analyzers.indexer.Indexer

Index Note, Rest, and Chord objects in a DataFrame.

Rest objects become 'Rest', and Note objects become the string-format version of their
nameWithOctave attribute. Chord objects get unpacked into their constituent pitches.

This indexer is meant to be called indirectly with a call to get_data on an indexed piece in the manner of the
following example.

Example:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('path_to_piece.xml')
>>> ip.get_data('multistop')

required_score_type = ‘pandas.DataFrame’

run()
Make a new index of the note and rest names in the piece. When a single part has chord objects, those
chords get separated out into as many columns as there are notes in the chord with the greatest number of
notes. This means that there can be more columns in this dataframe than there are parts in the piece.

Returns A DataFrame of the new indices. The columns have a MultiIndex.

Return type pandas.DataFrame

2.3. API Specification 33

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Note
http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Rest
http://web.mit.edu/music21/doc/moduleReference/moduleChord.html#music21.chord.Chord
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame
http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Note.nameWithOctave
http://web.mit.edu/music21/doc/moduleReference/moduleChord.html#music21.chord.Chord
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame


VIS Framework Documentation, Release 3.0.5

class vis.analyzers.indexers.noterest.NoteRestIndexer(score)
Bases: vis.analyzers.indexer.Indexer

Index Note and Rest objects in a Part.

Rest objects become 'Rest', and Note objects become the string-format version of their
nameWithOctave attribute.

This indexer is meant to be called indirectly with a call to get_data on an indexed piece in the manner of the
following example.

Example:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('path_to_piece.xml')
>>> ip.get_data('noterest')

required_score_type = ‘pandas.DataFrame’

vis.analyzers.indexers.noterest.multistop_ind_func(event)
Used internally by MultiStopIndexer. Convert Note and Rest objects into a string and convert the
Chord objects into a list of the strings of their consituent pitch objects. The results must be contained in a tuple
or a list so that chords can later be unpacked into different 1-voice strands.

Parameters event (A music21 note, rest, or chord object.) – A music21 note,
rest, or chord object which get queried for their names.

Returns A one-tuple containing a string representation of the note or rest, or if the event is a chord,
a list of the strings of the names of its constituent pitches.

Return type 1-tuple of str or list of strings

Examples:

>>> from noterest.py import indexer_func
>>> from music21 import note,
>>> indexer_func(note.Note('C4'))
(u'C4',)
>>> indexer_func(note.Rest())
(u'Rest',)
>>> indexer_func(chord.Chord([note.Note('C4'), note.Note('E5')]))
[u'C4', u'E5']

vis.analyzers.indexers.noterest.noterest_ind_func(event)
Used internally by NoteRestIndexer. Convert Note, Rest, and If you want to keep all
the pitches in chords, consider using the :class:`MultiStopIndexer instead.

Parameters event (A music21 note, rest, or chord object.) – A music21 note,
rest, or chord object which get queried for their names.

Returns A one-tuple containing a string representation of the note or rest, or if the event is a chord,
a list of the strings of the names of its constituent pitches.

Return type 1-tuple of str or list of strings

Examples:

>>> from noterest.py import indexer_func
>>> from music21 import note,
>>> indexer_func(note.Note('C4'))
u'C4'
>>> indexer_func(note.Rest())

34 Chapter 2. Table of Contents

http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Note
http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Rest
http://web.mit.edu/music21/doc/moduleReference/moduleStream.html#music21.stream.Part
http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Note.nameWithOctave
http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Note
http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Rest
http://web.mit.edu/music21/doc/moduleReference/moduleChord.html#music21.chord.Chord
http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Note
http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Rest


VIS Framework Documentation, Release 3.0.5

u'Rest'
>>> indexer_func(chord.Chord([note.Note('E5'), note.Note('C4')]))
u'E5'

vis.analyzers.indexers.noterest.unpack_chords(df)
The c in nrc in methods like _get_m21_nrc_objs() stands for chord. This method unpacks music21 chords into
a list of their constituent pitch objects. These pitch objects can be queried for their nameWithOctave in the
same way that note objects can in music21. This works by broadcasting the list of pitches in each chord object
in each part’s elements to a dataframe of note, pitch, and rest objects. So each part that had chord objects in it
gets represented as a dataframe instead of just a series. Then the series from the parts that didn’t have chords in
them get concatenated with the parts that did, resulting in potentially more columns in the final dataframe then
there are parts in the score.

offset Module

Indexers that modify the “offset” values (floats stored as the “index” of a pandas.Series), potentially adding
repetitions of or removing pre-existing events, without modifying the events themselves.

class vis.analyzers.indexers.offset.FilterByOffsetIndexer(score, settings=None)
Bases: vis.analyzers.indexer.Indexer

Indexer that regularizes the “offset” values of observations from other indexers.

The Indexer regularizes observations from offsets spaced any, possibly irregular, quarterLength durations
apart, so they are instead observed at regular intervals. This has two effects:

•events that do not begin at an observed offset will only be included in the output if no other event occurs
before the next observed offset

•events that last for many observed offsets will be repeated for those offsets

Since elements’ durations are not recorded, the last observation in a Series will always be included in the results.
If it does not start on an observed offset, it will be included as the next observed offset—again, whether or not
this is true in the actual music. However, the last observation will only ever be counted once, even if a part ends
before others in a piece with many parts. See the doctests for examples.

Examples:

For all, the quarterLength is 1.0.

When events in the input already appear at intervals of quarterLength, input and output are identical.

offset 0.0 1.0 2.0
input a b c
output a b c

When events in the input appear at intervals of quarterLength, but there are additional elements between
the observed offsets, those additional elements are removed.

offset 0.0 0.5 1.0 2.0
input a A b c
output a b c

offset 0.0 0.25 0.5 1.0 2.0
input a z A b c
output a b c

When events in the input appear at intervals of quarterLength, but not at every observed offset, the event
from the previous offset is repeated.

2.3. API Specification 35

http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series


VIS Framework Documentation, Release 3.0.5

offset 0.0 1.0 2.0
input a c
output a a c

When events in the input appear at offsets other than those observed by the specified quarterLength, the
“most recent” event will appear.

offset 0.0 0.25 0.5 1.0 2.0
input a z A c
output a A c

When the final event does not appear at an observed offset, it will be included in the output at the next offset
that would be observed, even if this offset does not appear in the score file to which the results correspond.

offset 0.0 1.0 1.5 2.0
input a b d
output a b d

The behaviour in this last example can create a potentially misleading result for some analytic situations that
consider meter. It avoids another potentially misleading situation where the final chord of a piece would appear
to be dissonant because of a suspension. We chose to lose metric and rythmic precision, which would be more
profitably analyzed with indexers built for that purpose. Consider this illustration, where the numbers correspond
to scale degrees.

offset 410.0 411.0 411.5 412.0
in-S 2 1
in-A 7 5
in-T 4 ———– 3
in-B 5 1
out-S 2 1 1
out-A 7 5 5
out-T 4 4 3
out-B 5 1 1

If we left out the note event appear in the in-A part at offset 411.5, the piece would appear to end with a
dissonant sonority!

default_settings = {‘method’: ‘ffill’, ‘mp’: True}

possible_settings = [’quarterLength’, ‘method’, ‘mp’]
A list of possible settings for the FilterByOffsetIndexer.

Parameters

• 'quarterLength' (float) – The quarterLength duration between observations de-
sired in the output. This value must not have more than three digits to the right of the
decimal (i.e. 0.001 is the smallest possible value).

• 'method' (str or None) – The value passed as the method kwarg to reindex().
The default is 'ffill', which fills in missing indices with the previous value. This is
useful for vertical intervals, but not for horizontal, where you should use None instead.

• 'mp' (boolean) – Multiprocesses when True (default) or processes serially when False.

Examples:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('path_to_piece.xml')
>>> notes = ip.get_data('noterest')
>>> setts = {'quarterLength': 2}
>>> ip.get_data('offset', data=notes, settings=setts)

36 Chapter 2. Table of Contents

https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.reindex.html#pandas.DataFrame.reindex


VIS Framework Documentation, Release 3.0.5

# Note that other analysis results can be passed to the offset # indexer too, such as the IntervalIndexer
results as in the # following example. Also, the original column names (or names of # the series if a list of
series was passed) are retained, though # the highest level of the columnar multi-index gets overwritten

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('path_to_piece.xml')
>>> intervals = ip.get_data('vertical_interval')
>>> setts = {'quarterLength': 2}
>>> ip.get_data('offset', data=intervals, settings=setts)

required_score_type = ‘pandas.Series’
The FilterByOffsetIndexer uses pandas.Series objects.

run()
Regularize the observed offsets for the Series input.

Returns A DataFrame with offset-indexed values for all inputted parts. The pandas indices
(holding music21 offsets) start at the first offset at which there is an event in any of the
inputted parts. An offset appears every quarterLength until the final offset, which is
either the last observation in the piece (if it is divisible by the quarterLength) or the
next-highest value that is divisible by quarterLength.

Return type pandas.DataFrame

over_bass Module

class vis.analyzers.indexers.over_bass.OverBassIndexer(score, settings=None)
Bases: vis.analyzers.indexer.Indexer

Using horizontal events and vertical intervals, this finds the intervals over the bass motion.

Call this indexer via the get_data() method of either an indexed_piece object or an
aggregated_pieces object (see examples below). The DataFrames passed in the ‘score’ argument should
be concatenated

Parameters

• 'horizontal' (int) – The horizontal voice you wish to use as a bass. If not indicated,
this is automatically assigned to the lowest voice.

• 'type' (str) – The type of horizontal event you wish to index. The default is ‘notes’,
which should be used if you are passing in the results of the NoteRestIndexer. If you
are passing in the results of the HorizontalIntervalIndexer.

Example:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('path_to_piece.xml')

This example provides note names for the tracked voice (usually the bass voice):

>>> input_dfs = [ip.get_data('noterest'),
ip.get_data('vertical_interval')]

>>> ob_setts = {'type': 'notes'}
>>> ip.get_data('over_bass', data=input_dfs, settings=ob_setts)

To use the OverBassIndexer with the melodic intervals of the tracked voice instead, do this:

2.3. API Specification 37

http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str


VIS Framework Documentation, Release 3.0.5

>>> input_dfs = [ip.get_data('horizontal_interval'),
ip.get_data('vertical_interval')]

>>> ob_setts = {'type': 'intervals'}
>>> ip.get_data('over_bass', data=input_dfs, settings=ob_setts)

possible_settings = [’horizontal’, ‘type’]

required_score_type = ‘pandas.DataFrame’

run()
Make a new index of the intervals over the bass motion.

Returns A DataFrame of the intervals over the bass.

Return type pandas.DataFrame

repeat Module

Indexers that consider repetition in any way.

class vis.analyzers.indexers.repeat.FilterByRepeatIndexer(score, settings=None)
Bases: vis.analyzers.indexer.Indexer

If the same event occurs many times in a row, remove all occurrences but the one with the lowest offset value
(i.e., the “first” event).

Because of how a DataFrame‘s index works, many of the events that would have been filtered will instead be
replaced with numpy.NaN. Please be careful that the behaviour of this indexer matches your expectations.

Example:

Prepare an indexed piece:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('path_to_piece.xml')

This example filters the repeats out of the NoteRestIndexer results, but any can be passed:

>>> notes = ip.get_data('noterest')
>>> ip.get_data('repeat', data=notes)

required_score_type = ‘pandas.Series’

run()
Make a new index of the piece, removing any event that is identical to the preceding.

Returns A DataFrame of the new indices.

Return type pandas.DataFrame

template Module

Template for writing a new indexer. Use this class to help write a new :class‘Indexer‘ subclass. The
TemplateIndexer does nothing, and should only be used by programmers.

Note: Follow these instructions to write a new Indexer subclass:

1. Replace my name with yours in the “codeauthor” directive above.

38 Chapter 2. Table of Contents

http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame


VIS Framework Documentation, Release 3.0.5

2. Change the “Filename” and “Purpose” on lines 7 and 8.

3. Modify the “Copyright” on line 10 or add an additional copyright line immediately below.

4. Remove the # pylint: disable=W0613 comment just before indexer_func().

5. Rename the class.

6. Adjust required_score_type.

7. Add settings to possible_settings and default_settings, as required.

8. Rewrite the documentation for __init__().

9. Rewrite the documentation for run().

10. Rewrite the documentation for indexer_func().

11. Write all relevant tests for __init__(), run(), and indexer_func().

12. Follow the instructions in __init__() to write that method.

13. Follow the instructions in run() to write that method.

14. Write a new indexer_func().

15. Ensure your tests pass, adding additional ones as required.

16. Finally, run pylint with the VIS style rules.

class vis.analyzers.indexers.template.TemplateIndexer(score, settings=None)
Bases: vis.analyzers.indexer.Indexer

Template for an Indexer subclass.

default_settings = {}
The default values for settings named in possible_settings. If a setting doesn’t have a value in
this constant, then it must be specified to the constructor at runtime, or the constructor should raise a
RuntimeException.

possible_settings = [’fake_setting’]
This is a list of string that are the names of the settings used in this indexer. Specify the types and reasons
for each setting as though it were an argument list, like this:

Parameters 'fake_setting' (boolean) – This is the description of a fake setting.

required_score_type = ‘stream.Part’
Depending on how this indexer works, you must provide a DataFrame, a Score, or list of Part or
Series objects. Only choose Part or Series if the input will always have single-integer part combi-
nations (i.e., there are no combinations—it will be each part independently).

run()
Make a new index of the piece.

Returns The new indices. Refer to the note below.

Return type pandas.DataFrame or list of pandas.Series

Important: Please be sure you read and understand the rules about return values in the full documentation
for run() and make_return().

vis.analyzers.indexers.template.indexer_func(obj)
The function that indexes.

2.3. API Specification 39

http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series


VIS Framework Documentation, Release 3.0.5

Parameters obj (list of objects of the types stored in TemplateIndexer._types) – The si-
multaneous event(s) to use when creating this index. (For indexers using a Score).

or

Parameters obj (pandas.Series of strings) – The simultaneous event(s) to use when creating
this index. (For indexers using a Series).

Returns The value to store for this index at this offset.

Return type str

windexer Module

class vis.analyzers.indexers.windexer.Windexer(score, settings=None)
Bases: vis.analyzers.indexer.Indexer

Indexer that creates new a new windowed version of other indexer results.

Parameters 'window_size' (integer) – The size of the window of the DataFrame that you
would like to look at. The default setting is 4.

Example:

Prepare an indexed piece:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('path_to_piece.xml')

This example prepares “windows” of notes and rests, but any dataframe could be used:

>>> notes = ip.get_data('noterest')
>>> setts = {'window_size': 4}
>>> ip.get_data('windexer', data=notes, settings=setts)

default_settings = {‘window_size’: 4}

possible_settings = [’window_size’]

required_score_type = ‘pandas.DataFrame’

run()
Make a new windowed index of the indexer results.

Returns The new windowed DataFrame.

Return type pandas.DataFrame

models Package

models Package

aggregated_pieces Module

The model representing data from multiple IndexedPiece instances.

class vis.models.aggregated_pieces.AggregatedPieces(pieces=None, metafile=None)
Bases: object

Hold data from multiple IndexedPiece instances.

40 Chapter 2. Table of Contents

http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#str
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/2.7/library/functions.html#object


VIS Framework Documentation, Release 3.0.5

class Metadata
Bases: object

Used internally by AggregatedPieces ... at least for now. Hold aggregated metadata about the In-
dexedPieces in an AggregatedPiece. Every list has no duplicate entries. - composers: list of all the
composers in the IndexedPieces - dates: list of all the dates in the IndexedPieces - date_range: 2-tuple with
the earliest and latest dates in the IndexedPieces - titles: list of all the titles in the IndexedPieces - locales:
list of all the locales in the IndexedPieces - pathnames: list of all the pathnames in the IndexedPieces

composers

date_range

dates

locales

pathnames

titles

AggregatedPieces.get_data(ind_analyzer=None, combined_experimenter=None, set-
tings=None, data=None)

Get the results of an Indexer or an Experimenter run on all the IndexedPiece objects either
individually, or all together. If settings are provided, the same settings dict will be used throughout.

In VIS, analyzers are broken down into two categories: Indexers which associate observations with a
specific moment in a piece, and Experimenters which still work with musical observations, but do not as-
sociate them with a specific moment in a specific IndexedPiece. For example, the noterest.NoteRestIndexer
associates each note and rest with a time point in a given IndexedPiece, but if we then use the fre-
quency.FrequencyExperimenter to count the number of times each type of note or rest happens, these
counts will not and cannot be associated with a specific time point.

All VIS Indexers and most Experimenters run on each piece individually, and so if these results are desired,
the analyzer in question should be assigned to the ind_analyzer argument. The barchart.RBarChart
and aggregator.ColumnAggregator experimenters often combine the data of several pieces together. The
frequency.FrequencyExperimenter can also be used this way. If this is the desired behavior, supply the
appropriate Experimenter as the combined_experimenter argument.

Examples

Note: The analyzers in the analyzer_cls argument are run with get_data() from the
IndexedPiece objects themselves. Thus any exceptions raised there may also be raised here.

Get the results of an Experimenter or Indexer run on this IndexedPiece.

Parameters

• ind_analyzer (str or VIS Indexer or Experimenter class.) – The
analyzer to run.

• settings (dict) – Settings to be used with the analyzer. Only use if necessary.

• data (Depends on the requirement of the analyzer designated by the analyzer_cls
argument. Usually a list of pandas.DataFrame.) – Input data for the analyzer to run.
If this is provided for an indexer that normally caches its results (such as the NoteRestIn-
dexer, the DurationIndexer, etc.), the results will not be cached since it is uncertain if the
input passed in the data argument was calculated on this indexed_piece.

Returns Results of the analyzer.

2.3. API Specification 41

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame


VIS Framework Documentation, Release 3.0.5

Return type Depending on the analyzer_cls, either a pandas.DataFrame or more of-
ten a list of pandas.DataFrame.

Returns Either one pandas.DataFrame with all experimental results or a list of
DataFrame objects, each with the experimental results for one piece.

Raises TypeError if an analyzer is invalid or cannot be found.

AggregatedPieces.metadata(field)
Get a metadatum about the IndexedPieces stored in this AggregatedPieces. If only some of the stored
IndexedPieces have had their metadata initialized, this method returns incompelete metadata. Missing
data will be represented as None in the list, but it will not appear in date_range unless there are no
dates. If you need full metadata, we recommend running an Indexer that requires a Score object on
all the IndexedPieces (like vis.analyzers.indexers.noterest.NoteRestIndexer). Valid
fields are: * 'composers: list of all the composers in the IndexedPieces * 'dates: list of all the dates
in the IndexedPieces * 'date_range: 2-tuple with the earliest and latest dates in the IndexedPieces *
'titles: list of all the titles in the IndexedPieces * 'locales: list of all the locales in the Indexed-
Pieces * 'pathnames: list of all the pathnames in the IndexedPieces :param field: The name of the field
to be accessed or modified. :type field: str :returns: The value of the requested field or None, if accessing
a non-existant field or a

field that has not yet been initialized in the IndexedPieces.

Return type object or None

Raises TypeError if field is not a str.

indexed_piece Module

This model represents an indexed and analyzed piece of music.

vis.models.indexed_piece.Importer(location, metafile=None)
Import the file, website link, or directory of files designated by location to music21 format.

Parameters location (str) – Location of the file to import on the local disk.

Returns An IndexedPiece or an AggregatedPieces object if the file passed imports as a
music21.stream.Score or music21.stream.Opus object respectively.

Return type A new IndexedPiece or AggregatedPieces object.

class vis.models.indexed_piece.IndexedPiece(pathname=’‘, opus_id=None, score=None,
metafile=None, username=None, pass-
word=None)

Bases: object

Hold indexed data from a musical score, and the score itself. IndexedPiece objects are VIS’s basic represen-
tations of a piece of music and also a container for metadata and analyses about that piece. An IndexedPiece
object should be created by passing the pathname of a symbolic notation file to the Importer() method in this
file. The Importer() will return an IndexedPiece object as long as the piece did not import as an opus. In this case
Importer() will return an AggregatedPieces object. Information about an IndexedPiece object from an indexer
or an experimenter should be requested via the get_data() method. If you want to access the full music21 score
object of a VIS IndexedPiece object, access the _score attribute of the IndexedPiece object. See the examples
below:

Examples # Creat an IndexedPiece object from vis.models.indexed_piece import Importer ip = Im-
porter(‘path_to_file.xml’)

# Get the results of an indexer or experimenter (noterest and dissonance indexers shown) noterest_results =
ip.get_data(‘noterest’) dissonance_results = ip.get_data(‘dissonance’)

42 Chapter 2. Table of Contents

http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#str
http://web.mit.edu/music21/doc/moduleReference/moduleStream.html#music21.stream.Score
http://web.mit.edu/music21/doc/moduleReference/moduleStream.html#music21.stream.Opus
https://docs.python.org/2.7/library/functions.html#object


VIS Framework Documentation, Release 3.0.5

# Access the full music21 score object of the file ip._score

get_data(analyzer_cls, data=None, settings=None)
Get the results of an Experimenter or Indexer run on this IndexedPiece.

Parameters

• analyzer_cls (str or VIS Indexer or Experimenter class.) – The
analyzer to run.

• settings (dict) – Settings to be used with the analyzer. Only use if necessary.

• data (Depends on the requirement of the analyzer designated by the analyzer_cls
argument. Usually a pandas.DataFrame or a list of pandas.Series.) – Input
data for the analyzer to run. If this is provided for an indexer that normally caches its
results (such as the NoteRestIndexer, the DurationIndexer, etc.), the results will not be
cached since it is uncertain if the input passed in the data argument was calculated on
this indexed_piece.

Returns Results of the analyzer.

Return type Usually pandas.DataFrame or list of pandas.Series.

Raises RuntimeWarning if the analyzer_cls is invalid or cannot be found.

Raises RuntimeError if the first analyzer class in analyzer_cls does not use Score
objects, and data is None.

load_url(url)

measure_index(dataframe)
Multi-indexes the index of the passed dataframe by adding the measures to the offsets. The passed
dataframe should be of an indexer’s results, not an experimenters. Also adds index labels. Note that
this method currently does not work with midi files, because VIS cannot detect measures in midi files
since they are not encoded in midi. Also note that this method should ideally only be used at the end of
a set of analysis steps, because there is no guarantee that the resultant multi-indexed dataframe will not
cause problems if passed to a subsequent indexer.

Example from vis.models.indexed_piece import Importer() # Make an IndexedPiece object out of a sym-
bolic notation file: ip = Importer(‘path_to_file.xml’) # Get some results from an indexer (not an experi-
menter): df = ip.get_data(‘horizontal_interval’) # Multi-index the dataframe index by adding the measure
informaiton: ip.measure_index(df)

metadata(field, value=None)
Get or set metadata about the piece. .. note:: Some metadata fields may not be available for all pieces. The
available metadata

fields depend on the specific file imported. Unavailable fields return None. We guarantee real
values for pathname, title, and parts.

Parameters

• field (str) – The name of the field to be accessed or modified.

• value (object or None) – If not None, the value to be assigned to field.

Returns The value of the requested field or None, if assigning, or if accessing a non-existant
field or a field that has not yet been initialized.

Return type object or None (usually a string)

Raises TypeError if field is not a string.

Raises AttributeError if accessing an invalid field (see valid fields below).

2.3. API Specification 43

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series
http://web.mit.edu/music21/doc/moduleReference/moduleStream.html#music21.stream.Score
https://docs.python.org/2.7/library/functions.html#str


VIS Framework Documentation, Release 3.0.5

Metadata Field Descriptions All fields are taken directly from music21 unless otherwise noted. +——
—————+——————————————————————–+ | Metadata Field | Description |
+=====================+====================================================================+
| alternativeTitle | A possible alternate title for the piece; e.g. Bruckner’s | | | Symphony No. 8 in C minor
is known as “The German Michael.” | +———————+——————————————————
————–+ | anacrusis | The length of the pick-up measure, if there is one. This is not | | | determined by
music21. | +———————+——————————————————————–+ | composer | The
author of the piece. | +———————+——————————————————————–+ | com-
posers | If the piece has multiple authors. | +———————+—————————————————
—————–+ | date | The date that the piece was composed or published. | +———————+————
——————————————————–+ | localeOfComposition | Where the piece was composed.
| +———————+——————————————————————–+ | movementName | If the
piece is part of a larger work, the name of this | | | subsection. | +———————+—————————
—————————————–+ | movementNumber | If the piece is part of a larger work, the number
of this | | | subsection. | +———————+——————————————————————–+ |
number | Taken from music21. | +———————+—————————————————————
—–+ | opusNumber | Number assigned by the composer to the piece or a group | | | containing it, to help
with identification or cataloguing. | +———————+———————————————————
———–+ | parts | A list of the parts in a multi-voice work. This is determined | | | partially by music21. |
+———————+——————————————————————–+ | pathname | The filesystem
path to the music file encoding the piece. This is | | | not determined by music21. | +———————+—
—————————————————————–+ | title | The title of the piece. This is determined
partially by music21. | +———————+——————————————————————–+
Examples >>> piece = IndexedPiece(‘a_sibelius_symphony.mei’) >>> piece.metadata(‘composer’) ‘Jean
Sibelius’ >>> piece.metadata(‘date’, 1919) >>> piece.metadata(‘date’) 1919 >>> piece.metadata(‘parts’)
[’Flute 1’{‘Flute 2’{‘Oboe 1’{‘Oboe 2’{‘Clarinet 1’{‘Clarinet 2’, ... ]

exception vis.models.indexed_piece.OpusWarning
Bases: exceptions.RuntimeWarning

The OpusWarning is raised by IndexedPiece.get_data() when known_opus is False but the
file imports as a music21.stream.Opus object, and when known_opus is True but the file does not
import as a music21.stream.Opus object. Internally, the warning is actually raised by IndexedPiece.
_import_score().

vis.models.indexed_piece.auth_get(url, csrftoken, sessionid)
Use a csrftoken and sessionid to request a url on the elvisdatabase.

vis.models.indexed_piece.login_edb(username, password)
Return csrf and session tokens for a login.

workflow Module

Deprecated since version 3.0.0: The WorkflowManager is deprecated as of VIS 3.0.0 and will be entirely removed in
VIS 4.0. It was an important part of VIS in earlier versions but the iterative caching strategy implemented in VIS 3.0
obviates the need for the WorkflowManager and so it is being phased out for simplicity. Most of its functionality still
works with VIS 3.0, however, it is no longer being maintained or supported.

The workflow module holds the WorkflowManager, which automates several common music analysis patterns
for counterpoint. The TemplateWorkflow class is a template for writing new WorkflowManager classes.

class vis.workflow.WorkflowManager(pathnames)
Bases: object

Warning: The WorkflowManager is deprecated as of VIS 3.0 and will be entirely removed in VIS 4.0. Most
of its functionality still works with VIS 3.0 but this is not guaranteed and it is no longer being supported in
development.

44 Chapter 2. Table of Contents

https://docs.python.org/2.7/library/exceptions.html#exceptions.RuntimeWarning
http://web.mit.edu/music21/doc/moduleReference/moduleStream.html#music21.stream.Opus
http://web.mit.edu/music21/doc/moduleReference/moduleStream.html#music21.stream.Opus
https://docs.python.org/2.7/library/functions.html#object


VIS Framework Documentation, Release 3.0.5

Parameters pathnames (list or tuple of string or IndexedPiece) – A list of pathnames.

The WorkflowManager automates several common music analysis patterns for counterpoint. Use the
WorkflowManager with these four tasks:

•load(), to import pieces from symbolic data formats.

•run(), to perform a pre-defined analysis.

•output(), to output analysis results.

Before you analyze, you may wish to use these methods:

•metadata(), to get or set the metadata of a specific IndexedPiece managed by this
WorkflowManager.

•settings(), to get or set a setting related to analysis (for example, whether to display the quality of
intervals).

You may also treat a WorkflowManager as a container:

>>> wm = WorkflowManager(['piece1.mxl', 'piece2.krn'])
>>> len(wm)
2
>>> ip = wm[1]
>>> type(ip)
<class 'vis.models.indexed_piece.IndexedPiece'>

load(instruction=’pieces’, pathname=None)
Import analysis data from long-term storage on a filesystem. This should primarily be used for the
'pieces' instruction, to control when the initial music21 import happens.

Use load() with an instruction other than 'pieces' to load results from a previous analysis run by
run().

Note: If one of the files imports as a music21.stream.Opus, the number of pieces and their order
will change.

Parameters

• instruction (str) – The type of data to load. Defaults to 'pieces'.

• pathname (str) – The pathname of the data to import; not required for the 'pieces'
instruction.

Raises RuntimeError if the instruction is not recognized.

Instructions

Note: only 'pieces' is implemented at this time.

•'pieces', to import all pieces, collect metadata, and run NoteRestIndexer

•'hdf5' to load data from a previous output().

•'stata' to load data from a previous output().

•'pickle' to load data from a previous output().

2.3. API Specification 45

http://web.mit.edu/music21/doc/moduleReference/moduleStream.html#music21.stream.Opus
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str


VIS Framework Documentation, Release 3.0.5

metadata(index, field, value=None)
Get or set a metadata field. The valid field names are determined by IndexedPiece (refer to the docu-
mentation for metadata()).

A metadatum is a salient musical characteristic of a particular piece, and does not change across analyses.

Parameters

• index (int) – The index of the piece to access. The range of valid indices is 0 through
one fewer than the len() of this WorkflowManager.

• field (str) – The name of the field to be accessed or modified.

• value (object) – If not None, the new value to be assigned to field.

Returns The value of the requested field or None, if assigning, or if accessing a non-existant
field or a field that has not yet been initialized.

Return type object

Raises TypeError if field is not a string.

Raises AttributeError if accessing an invalid field.

Raises IndexError if index is invalid for this WorkflowManager.

output(instruction, pathname=None, top_x=None, threshold=None)
Output the results of the most recent call to run(), saved in a file. This method handles both visualizations
and symbolic output formats.

Note: For LiliyPond output, you must have called run() with count frequency set to False.

Note: If count frequency is set to False for CSV, Stata, Excel, or HTML output, the top_x and
threshold parameters are ignored.

Parameters

• instruction (str) – The type of visualization to output.

• pathname (str) – The pathname for the output. The default is 'test_output/
output_result. Do not include a file-type “extension,” since we add this au-
tomatically. For the LilyPond experiment, if there are multiple pieces in the
WorkflowManager, we append the piece’s index to the pathname.

• top_x (integer) – This is the “X” in “only show the top X results.” The default is
None. Does not apply to the LilyPond experiment.

• threshold (integer) – If a result is strictly less than this number, it will be left out.
The default is None. This is ignored for the 'LilyPond' instruction. Does not apply to
the LilyPond experiment.

Returns The pathname(s) of the outputted visualization(s). Requesting a histogram always re-
turns a single string; requesting a score (or some scores) always returns a list. The other
formats will return a list if the count frequency setting is False.

Return type str or [str]

Raises RuntimeError for unrecognized instructions.

Raises RuntimeError if run() has never been called.

46 Chapter 2. Table of Contents

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#len
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str


VIS Framework Documentation, Release 3.0.5

Raises RuntiemError if a call to R encounters a problem.

Raises RuntimeError with LilyPond output, if we think you called run() with count
frequency set to True.

Instructions:

•'histogram': a histogram. Currently equivalent to the 'R histogram' instruction.

•'LilyPond': each score with annotations for analyzed objects.

•'R histogram': a histogram with ggplot2 in R. Currently equivalent to the 'histogram' instruction. In the future, this will be used to distinguish histograms
produced with R from those produced with other libraries, like matplotlib or bokeh.

•'CSV': output a Series or DataFrame to a CSV file.

•'Stata': output a Stata file for importing to R.

•'Excel': output an Excel file for Peter Schubert.

•'HTML': output an HTML table, as used by the VIS Counterpoint Web App.

Note: We try to prevent you from requesting LilyPond output if you called run() with count
frequency set to True by raising a RuntimeError if count frequency is True, or the num-
ber of pieces is not the same as the number of results. It is still possible to call run() with count
frequency set to True in a way we will not detect. However, this always causes output() to fail.
The error will probably be a TypeError that says object of type 'numpy.float64' has
no len().

run(instruction)
Run an experiment’s workflow. Remember to call load() before this method.

Parameters instruction (str) – The experiment to run (refer to “List of Experiments”
below).

Returns The result of the experiment.

Return type pandas.Series or pandas.DataFrame or a list of lists of pandas.
Series. If 'count frequency' is set to False, the return type will be a list of lists
of series wherein the containing list has each piece in the experiment as its elements (even
if there is only one piece in the experiment, this will be a list of length one). The contained
lists contain the results of the experiment for each piece where each element in the list cor-
responds to a unique voice combination in an unlabelled and unpredictable fashion. Finally
each series corresponds the experiment results for a given voice combination in a given piece.

Raises RuntimeError if the instruction is not valid for this WorkflowManager.

Raises RuntimeError if you have not called load().

Raises ValueError if the voice-pair selection is invalid or unset.

List of Experiments

•'intervals': find the frequency of vertical intervals in 2-part combinations. All settings will
affect analysis except 'n'. No settings are required; if you do not set 'voice combinations',
all two-part combinations are included.

•'interval n-grams': find the frequency of n-grams of vertical intervals connected by the hor-
izontal interval of the lowest voice. All settings will affect analysis. You must set the 'voice
combinations' setting. The default value for 'n' is 2.

2.3. API Specification 47

https://docs.python.org/2.7/library/functions.html#str
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series


VIS Framework Documentation, Release 3.0.5

settings(index, field, value=None)
Get or set a value related to analysis. The valid values are listed below.

A setting is related to this particular analysis, and is not a salient musical feature of the work itself.

Refer to run() for a list of settings required or used by each experiment.

Parameters

• index (int or None) – The index of the piece to access. The range of valid indices is 0
through one fewer than the return value of calling len() on this WorkflowManager. If
value is not None and index is None, you can set a field for all pieces.

• field (str) – The name of the field to be accessed or modified.

• value (object or None) – If not None, the new value to be assigned to field.

Returns The value of the requested field or None, if assigning, or if accessing a non-existant
field or a field that has not yet been initialized.

Return type object or None

Raises AttributeError if accessing an invalid field (see valid fields below).

Raises IndexError if index is invalid for this WorkflowManager.

Raises ValueError if index and value are both None.

Piece-Specific Settings

Pieces do not share these settings.

•offset interval: If you want to run the FilterByOffsetIndexer, specify a value for
this setting. To avoid running the FilterByOffsetIndexer, set this to 0. This will become the
quarterLength duration between observed offsets.

•filter repeats: If you want to run the FilterByRepeatIndexer, set this setting to True.

•voice combinations: If you want to consider certain specific voice combinations, set this set-
ting to a list of a list of iterables. The following value would analyze the highest three voices with each
other: '[[0,1,2]]' while this would analyze the every part with the lowest for a four-part piece:
'[[0, 3], [1, 3], [2, 3]]'. This should always be a str that nominally represents a list
(except the special values for 'all' parts at once or 'all pairs').

Shared Settings

All pieces share these settings. The value of index is ignored for shared settings, so it can be anything.

•n: As specified in vis.analyzers.indexers.ngram.NGramIndexer.
possible_settings.

•continuer: Determines the way unisons that arise from sustained notes in the lowest voice are
represented. Note that if the FilterByOffsetIndexer is used, the continuer won’t get used. The default
is ‘dynamic quality’ which sets to ‘P1’ if interval quality is set to True, and ‘1’ if it is set to False.
This is given directly to the NGramIndexer. Refer to possible_settings.

•interval quality: If you want to display interval quality, set this setting to True.

•simple intervals: If you want to display all intervals as their single-octave equivalents, set this
setting to True.

•include rests: If you want to include 'Rest' tokens as vertical intervals, change this setting
to True. The default is False.

48 Chapter 2. Table of Contents

https://docs.python.org/2.7/library/functions.html#len
https://docs.python.org/2.7/library/functions.html#str


VIS Framework Documentation, Release 3.0.5

•count frequency: When set to True (the default), experiments will return the number of oc-
currences of each token (i.e., “each interval” or “each interval n-gram”). When set to False, the
moment-by-moment analysis of each piece is retained. We recommend you only request spreadsheet-
formatted output when count frequency is False.

vis.workflow.split_part_combo(key)
Split a comma-separated list of two integer part names into a tuple of the integers.

Parameters key (str) – String with the part names.

Returns The indices of parts referred to by the key.

Return type tuple of int

>>> split_part_combo('5,6')
(5, 6)
>>> split_part_combo('234522,98100')
(234522, 98100)
>>> var = split_part_combo('1,2')
>>> split_part_combo(str(var[0]) + ',' + str(var[1]))
(1, 2)

Indices and Tables

• genindex

• modindex

• search

2.4. Indices and Tables 49

https://docs.python.org/2.7/library/functions.html#str


VIS Framework Documentation, Release 3.0.5

50 Chapter 2. Table of Contents



Python Module Index

v
vis.analyzers, 15
vis.analyzers.experimenter, 16
vis.analyzers.experimenters, 18
vis.analyzers.experimenters.aggregator,

18
vis.analyzers.experimenters.barchart,

20
vis.analyzers.experimenters.frequency,

19
vis.analyzers.experimenters.template,

21
vis.analyzers.indexer, 16
vis.analyzers.indexers, 22
vis.analyzers.indexers.active_voices,

22
vis.analyzers.indexers.cadence, 23
vis.analyzers.indexers.contour, 24
vis.analyzers.indexers.dissonance, 25
vis.analyzers.indexers.fermata, 26
vis.analyzers.indexers.interval, 27
vis.analyzers.indexers.meter, 29
vis.analyzers.indexers.ngram, 30
vis.analyzers.indexers.noterest, 33
vis.analyzers.indexers.offset, 35
vis.analyzers.indexers.over_bass, 37
vis.analyzers.indexers.repeat, 38
vis.analyzers.indexers.template, 38
vis.analyzers.indexers.windexer, 40
vis.models, 40
vis.models.aggregated_pieces, 40
vis.models.indexed_piece, 42
vis.workflow, 44

51



VIS Framework Documentation, Release 3.0.5

52 Python Module Index



Index

A
ActiveVoicesIndexer (class in

vis.analyzers.indexers.active_voices), 22
AggregatedPieces (class in

vis.models.aggregated_pieces), 40
AggregatedPieces.Metadata (class in

vis.models.aggregated_pieces), 40
auth_get() (in module vis.models.indexed_piece), 44

B
beatstrength_ind_func() (in module

vis.analyzers.indexers.meter), 30

C
CadenceIndexer (class in vis.analyzers.indexers.cadence),

23
check_4s_5s() (vis.analyzers.indexers.dissonance.DissonanceIndexer

method), 25
classify() (vis.analyzers.indexers.dissonance.DissonanceIndexer

method), 26
ColumnAggregator (class in

vis.analyzers.experimenters.aggregator),
18

COM_matrix() (in module
vis.analyzers.indexers.contour), 24

compare() (in module vis.analyzers.indexers.contour), 24
composers (vis.models.aggregated_pieces.AggregatedPieces.Metadata

attribute), 41
ContourIndexer (class in vis.analyzers.indexers.contour),

24

D
date_range (vis.models.aggregated_pieces.AggregatedPieces.Metadata

attribute), 41
dates (vis.models.aggregated_pieces.AggregatedPieces.Metadata

attribute), 41
default_settings (vis.analyzers.experimenter.Experimenter

attribute), 16

default_settings (vis.analyzers.experimenters.aggregator.ColumnAggregator
attribute), 19

default_settings (vis.analyzers.experimenters.barchart.RBarChart
attribute), 20

default_settings (vis.analyzers.experimenters.frequency.FrequencyExperimenter
attribute), 20

default_settings (vis.analyzers.experimenters.template.TemplateExperimenter
attribute), 21

default_settings (vis.analyzers.indexer.Indexer attribute),
16

default_settings (vis.analyzers.indexers.active_voices.ActiveVoicesIndexer
attribute), 22

default_settings (vis.analyzers.indexers.interval.HorizontalIntervalIndexer
attribute), 27

default_settings (vis.analyzers.indexers.interval.IntervalIndexer
attribute), 28

default_settings (vis.analyzers.indexers.ngram.NGramIndexer
attribute), 32

default_settings (vis.analyzers.indexers.offset.FilterByOffsetIndexer
attribute), 36

default_settings (vis.analyzers.indexers.template.TemplateIndexer
attribute), 39

default_settings (vis.analyzers.indexers.windexer.Windexer
attribute), 40

DissonanceIndexer (class in
vis.analyzers.indexers.dissonance), 25

DurationIndexer (class in vis.analyzers.indexers.meter),
29

E
Experimenter (class in vis.analyzers.experimenter), 16

F
FermataIndexer (class in vis.analyzers.indexers.fermata),

26
FilterByOffsetIndexer (class in

vis.analyzers.indexers.offset), 35
FilterByRepeatIndexer (class in

vis.analyzers.indexers.repeat), 38

53



VIS Framework Documentation, Release 3.0.5

FrequencyExperimenter (class in
vis.analyzers.experimenters.frequency), 19

G
get_data() (vis.models.aggregated_pieces.AggregatedPieces

method), 41
get_data() (vis.models.indexed_piece.IndexedPiece

method), 43
getContour() (in module vis.analyzers.indexers.contour),

24

H
HorizontalIntervalIndexer (class in

vis.analyzers.indexers.interval), 27

I
Importer() (in module vis.models.indexed_piece), 42
IndexedPiece (class in vis.models.indexed_piece), 42
Indexer (class in vis.analyzers.indexer), 16
indexer1() (in module

vis.analyzers.indexers.active_voices), 23
indexer_func() (in module

vis.analyzers.indexers.fermata), 26
indexer_func() (in module

vis.analyzers.indexers.template), 39
IntervalIndexer (class in vis.analyzers.indexers.interval),

28
IntervalReindexer (class in

vis.analyzers.indexers.interval), 28

L
load() (vis.workflow.WorkflowManager method), 45
load_url() (vis.models.indexed_piece.IndexedPiece

method), 43
locales (vis.models.aggregated_pieces.AggregatedPieces.Metadata

attribute), 41
login_edb() (in module vis.models.indexed_piece), 44

M
make_return() (vis.analyzers.indexer.Indexer method), 16
measure_ind_func() (in module

vis.analyzers.indexers.meter), 30
measure_index() (vis.models.indexed_piece.IndexedPiece

method), 43
MeasureIndexer (class in vis.analyzers.indexers.meter),

29
metadata() (vis.models.aggregated_pieces.AggregatedPieces

method), 42
metadata() (vis.models.indexed_piece.IndexedPiece

method), 43
metadata() (vis.workflow.WorkflowManager method), 45
multistop_ind_func() (in module

vis.analyzers.indexers.noterest), 34

MultiStopIndexer (class in
vis.analyzers.indexers.noterest), 33

N
NGramIndexer (class in vis.analyzers.indexers.ngram),

30
NoteBeatStrengthIndexer (class in

vis.analyzers.indexers.meter), 29
noterest_ind_func() (in module

vis.analyzers.indexers.noterest), 34
NoteRestIndexer (class in

vis.analyzers.indexers.noterest), 33

O
OpusWarning, 44
output() (vis.workflow.WorkflowManager method), 46
OUTPUT_TYPES (vis.analyzers.experimenters.barchart.RBarChart

attribute), 20
OverBassIndexer (class in

vis.analyzers.indexers.over_bass), 37

P
pathnames (vis.models.aggregated_pieces.AggregatedPieces.Metadata

attribute), 41
possible_settings (vis.analyzers.experimenter.Experimenter

attribute), 16
possible_settings (vis.analyzers.experimenters.aggregator.ColumnAggregator

attribute), 19
possible_settings (vis.analyzers.experimenters.barchart.RBarChart

attribute), 20
possible_settings (vis.analyzers.experimenters.frequency.FrequencyExperimenter

attribute), 20
possible_settings (vis.analyzers.experimenters.template.TemplateExperimenter

attribute), 21
possible_settings (vis.analyzers.indexer.Indexer at-

tribute), 16
possible_settings (vis.analyzers.indexers.active_voices.ActiveVoicesIndexer

attribute), 22
possible_settings (vis.analyzers.indexers.cadence.CadenceIndexer

attribute), 23
possible_settings (vis.analyzers.indexers.contour.ContourIndexer

attribute), 24
possible_settings (vis.analyzers.indexers.ngram.NGramIndexer

attribute), 32
possible_settings (vis.analyzers.indexers.offset.FilterByOffsetIndexer

attribute), 36
possible_settings (vis.analyzers.indexers.over_bass.OverBassIndexer

attribute), 38
possible_settings (vis.analyzers.indexers.template.TemplateIndexer

attribute), 39
possible_settings (vis.analyzers.indexers.windexer.Windexer

attribute), 40

54 Index



VIS Framework Documentation, Release 3.0.5

R
RBarChart (class in vis.analyzers.experimenters.barchart),

20
required_score_type (vis.analyzers.indexer.Indexer

attribute), 17
required_score_type (vis.analyzers.indexers.active_voices.ActiveVoicesIndexer

attribute), 23
required_score_type (vis.analyzers.indexers.cadence.CadenceIndexer

attribute), 23
required_score_type (vis.analyzers.indexers.contour.ContourIndexer

attribute), 24
required_score_type (vis.analyzers.indexers.dissonance.DissonanceIndexer

attribute), 26
required_score_type (vis.analyzers.indexers.fermata.FermataIndexer

attribute), 26
required_score_type (vis.analyzers.indexers.interval.IntervalIndexer

attribute), 28
required_score_type (vis.analyzers.indexers.meter.DurationIndexer

attribute), 29
required_score_type (vis.analyzers.indexers.meter.MeasureIndexer

attribute), 29
required_score_type (vis.analyzers.indexers.meter.NoteBeatStrengthIndexer

attribute), 29
required_score_type (vis.analyzers.indexers.ngram.NGramIndexer

attribute), 33
required_score_type (vis.analyzers.indexers.noterest.MultiStopIndexer

attribute), 33
required_score_type (vis.analyzers.indexers.noterest.NoteRestIndexer

attribute), 34
required_score_type (vis.analyzers.indexers.offset.FilterByOffsetIndexer

attribute), 37
required_score_type (vis.analyzers.indexers.over_bass.OverBassIndexer

attribute), 38
required_score_type (vis.analyzers.indexers.repeat.FilterByRepeatIndexer

attribute), 38
required_score_type (vis.analyzers.indexers.template.TemplateIndexer

attribute), 39
required_score_type (vis.analyzers.indexers.windexer.Windexer

attribute), 40
RSCRIPT_PATH (vis.analyzers.experimenters.barchart.RBarChart

attribute), 20
run() (vis.analyzers.experimenters.aggregator.ColumnAggregator

method), 19
run() (vis.analyzers.experimenters.barchart.RBarChart

method), 21
run() (vis.analyzers.experimenters.frequency.FrequencyExperimenter

method), 20
run() (vis.analyzers.experimenters.template.TemplateExperimenter

method), 22
run() (vis.analyzers.indexer.Indexer method), 17
run() (vis.analyzers.indexers.active_voices.ActiveVoicesIndexer

method), 23
run() (vis.analyzers.indexers.cadence.CadenceIndexer

method), 24

run() (vis.analyzers.indexers.contour.ContourIndexer
method), 24

run() (vis.analyzers.indexers.dissonance.DissonanceIndexer
method), 26

run() (vis.analyzers.indexers.interval.HorizontalIntervalIndexer
method), 27

run() (vis.analyzers.indexers.interval.IntervalIndexer
method), 28

run() (vis.analyzers.indexers.interval.IntervalReindexer
method), 28

run() (vis.analyzers.indexers.meter.DurationIndexer
method), 29

run() (vis.analyzers.indexers.ngram.NGramIndexer
method), 33

run() (vis.analyzers.indexers.noterest.MultiStopIndexer
method), 33

run() (vis.analyzers.indexers.offset.FilterByOffsetIndexer
method), 37

run() (vis.analyzers.indexers.over_bass.OverBassIndexer
method), 38

run() (vis.analyzers.indexers.repeat.FilterByRepeatIndexer
method), 38

run() (vis.analyzers.indexers.template.TemplateIndexer
method), 39

run() (vis.analyzers.indexers.windexer.Windexer
method), 40

run() (vis.workflow.WorkflowManager method), 47

S
series_indexer() (in module vis.analyzers.indexer), 17
settings() (vis.workflow.WorkflowManager method), 47
split_part_combo() (in module vis.workflow), 49

T
TemplateExperimenter (class in

vis.analyzers.experimenters.template), 21
TemplateIndexer (class in

vis.analyzers.indexers.template), 39
titles (vis.models.aggregated_pieces.AggregatedPieces.Metadata

attribute), 41

U
unpack_chords() (in module

vis.analyzers.indexers.noterest), 35

V
vis.analyzers (module), 15
vis.analyzers.experimenter (module), 16
vis.analyzers.experimenters (module), 18
vis.analyzers.experimenters.aggregator (module), 18
vis.analyzers.experimenters.barchart (module), 20
vis.analyzers.experimenters.frequency (module), 19
vis.analyzers.experimenters.template (module), 21

Index 55



VIS Framework Documentation, Release 3.0.5

vis.analyzers.indexer (module), 16
vis.analyzers.indexers (module), 22
vis.analyzers.indexers.active_voices (module), 22
vis.analyzers.indexers.cadence (module), 23
vis.analyzers.indexers.contour (module), 24
vis.analyzers.indexers.dissonance (module), 25
vis.analyzers.indexers.fermata (module), 26
vis.analyzers.indexers.interval (module), 27
vis.analyzers.indexers.meter (module), 29
vis.analyzers.indexers.ngram (module), 30
vis.analyzers.indexers.noterest (module), 33
vis.analyzers.indexers.offset (module), 35
vis.analyzers.indexers.over_bass (module), 37
vis.analyzers.indexers.repeat (module), 38
vis.analyzers.indexers.template (module), 38
vis.analyzers.indexers.windexer (module), 40
vis.models (module), 40
vis.models.aggregated_pieces (module), 40
vis.models.indexed_piece (module), 42
vis.workflow (module), 44

W
Windexer (class in vis.analyzers.indexers.windexer), 40
WorkflowManager (class in vis.workflow), 44

56 Index


	One-Paragraph Introduction
	Table of Contents
	Learn about and Install the VIS Framework
	Programming Tutorials for VIS
	API Specification
	Indices and Tables

	Python Module Index

