

 [image: Logo for the VIS Music Analysis Framework]
This is the API documentation for the VIS Framework for Music Analysis.
The VIS Framework is a Python package that uses music21 and pandas to build a flexible and easy system for writing symbolic music analysis computer programs.
By providing a free-and-open solution (AGPLv3+) we hope to lower the barrier to empirical music analysis.
The VIS Framework was developed at McGill University as part of the ELVIS Project (http://elvisproject.ca).
VIS has been presented at conferences, including the International Society for Music Information Retrieval and the Society for Music Theory.

About This Documentation

The API is written for programmers interested in symbolic music information retrieval (i.e., music theory analysis performed by computers).
Musicologists and programmers alike may access our VIS client at vis-rodan.simssa.ca [https://vis-rodan.simssa.ca], and some of our research findings from the ELVIS Project’s website [https://elvisproject.ca/research/].

The rest of the documentation discusses the VIS Framework’s architecture, how to install and use the framework, and how to add your own analysis tasks.

One-Paragraph Introduction

The VIS Framework uses two data models (IndexedPiece and AggregatedPieces) to fetch results for one or multiple pieces, respectively.
Call their get_data() method with a list of analyzer classes to run, and a dictionary with their settings.
After you develop an analysis workflow, add it to the WorkflowManager for more consistent operation.

Table of Contents

Learn about and Install the VIS Framework

	Design Principles
	Three Simple Components

	Three Levels of Interaction

	A More Detailed Look
	Two Types of Analyzers

	Two Types of Models

	Known Issues and Limitations

	Install the Framework
	Python 3

	Install for Deployment

	Install for Development

	Optional: Test the Framework Before Use
	If Tests Fail

	Optional: Install R and ggplot2 for Graphs

	Optional: Install LilyPond for Annotated Scores

Programming Tutorials for VIS

	Tutorial: Use N-Grams to Find Melodic Patterns

	Develop a Question

	What Does the NGramIndexer Require?

	How Shall We Prepare Results?

	Next Steps

	Tutorial: Use the WorkflowManager

	Port a Query into the WorkflowManager

API Specification

	vis
	analyzers Package
	analyzers Package

	experimenter Module

	indexer Module

	Subpackages
	experimenters Package
	experimenters Package

	aggregator Module

	frequency Module

	barchart Module

	lilypond Module

	template Module

	indexers Package
	indexers Package

	active_voices Module

	cadence Module

	contour Module

	dissonance Module

	fermata Module

	interval Module

	meter Module

	ngram Module

	noterest Module

	offset Module

	over_bass Module

	repeat Module

	template Module

	windexer Module

	models Package
	models Package

	aggregated_pieces Module

	indexed_piece Module

	workflow Module

Indices and Tables

	Index

	Module Index

	Search Page

Design Principles

Three Simple Components

In essence, the VIS Framework is built on three simple components: analyzers make music analysis decisions; models run analyzers on a score; the WorkflowManager determines the order analyzers are run.
In other words, the three components are about analysis decisions, making the decisions happen, and ordering the decision-happening.

Consider this example.
A common task for VIS is to count the number of vertical intervals in a piece of music.
You ask the WorkflowManager to run this query.
The WorkflowManager knows the steps involved: (1) name the notes in a score, (2) find the vertical intervals between simultaneous notes, and (3) count the number of occurrences of every interval.
For each step, the WorkflowManager asks a model for results.
The model represents a piece, and it knows, for example, how to find simultaneous events, and how to meaningfully organize the results of an analyzer.
Finally, an analyzer makes a single type of music analysis decision, for a single moment.
For example, the analyzer called IntervalIndexer takes two note names and determines the interval between them.

For a relatively simple music analysis task like counting the number of vertical intervals, these three components may seem anything but simple.
For more complicated music analysis tasks, the Framework’s architecture begins to pay off.
Whether finding contrapuntal modules, analyzing harmonic function, or anything else, these components will be enough to get the job done.
To design a new query (say, if you want to label chordal dissonances) you only need to add one analyzer for every analysis decision, then tell the WorkflowManager the order the analyzers should run.
Complicated analysis tasks will always be complicated, but VIS provides a solid, predictable Framework for any task, allowing you to focus on what’s special about your query, rather than on making sure you remember how to load pieces properly.

Three Levels of Interaction

Because of its flexibility, you may choose to interact with the VIS Framework on one of three levels, depending on the flexibility required for your task.

If you simply want to use VIS for one of its built-in queries, like finding vertical intervals or contrapuntal modules, you can use VIS as a program.
You may do this through a graphical interface like the Counterpoint Web App [https://counterpoint.elvisproject.ca] or through the Python shell directly, as described in use_as_a_program.

If the built-in WorkflowManager does not provide the workflow you need, but you can still accomplish your query with the built-in analyzers, you can use VIS as a library.
For example, you may wish to analyze melodic patterns with n-grams, as described in Tutorial: Use N-Grams to Find Melodic Patterns.

Finally, if your query cannot be implemented using the built-in analyzers, you can use VIS as a framework, adding analyzer modules and modifying the WorkflowManager as necessary.
For example, you may wish to DO WHATEVER WILL BE DESCRIBED IN THIS CROSS-REF.

A More Detailed Look

Two Types of Analyzers

Analyzers make music analysis decisions.
The VIS Framework has two types of analyzers: indexers and experimenters.

Indexers use a music21.stream.Score [http://web.mit.edu/music21/doc/moduleReference/moduleStream.html#music21.stream.Score], or a pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame] from another indexer, to perform a music analytic calculation.
The output of any indexer can be sensibly attached to a specific moment of a piece.
That is, indexers are for events that “happen” at an identifiable time.
Indexers may be relatively simple, like the IntervalIndexer, which accepts an index of the notes and rests in a piece, transforming it into an index of the vertical intervals between all the pairs of parts.
Indexers may also be complicated, like the NGramIndexer, which accepts at least one index of anything, and outputs an index of successions found therein.
An indexer might tell you scale degrees, the harmonic function of a chord, the figured bass signature of a simultaneity, or the moment of a modulation.

Experimenters always start with a DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame] produced by another analyzer, producing results that cannot be sensibly attached to a specific moment of a piece.
That is, experimenters are for characteristics of a piece (or movement) as a whole.
Experiments may be relatively simple, like the FrequencyExperimenter, which counts the number of occurrences of the objects in a DataFrame.
Experimenters may also be complicated, like one that produces a Markov transition model of figured bass signatures.

The distinction between indexers and experimenters helps to organize valid workflows.
Analyses may flow from indexer to indexer, from indexer to experimenter, and from experimenter to experimenter.
However, an analysis may not move from an experimenter to an indexer; once moment-specific information is lost, it cannot be recovered.
(The exception to the rule: indexers may use data from experimenters—as long as they also use data from another indexer or a Score).

When designing your own analyzers, we encourage you to avoid the temptation to include many analysis steps in the same analyzer, and instead to follow the design pattern set out with our own analyzers and our TemplateIndexer and TemplateExperimenter.
Following this design pattern helps ensure your program is easy to test, and therefore more trustworthy.
In addition, you may be able to contribute valuable new analyzer modules that will help other scholars get started with VIS more easily.

If required, you may use an analyzer to run external programs, possibly written in a different programming language.
For example, the RBarChart experimenter runs a program in the R language, using the ggplot2 library to produce a bar chart.
Another example is the LilyPondExperimenter, which uses the external outputlilypond Python module to produce a file for LilyPond [https://lilypond.org], a C program, which that module calls directly.

Two Types of Models

VIS uses two types of models: IndexedPiece and AggregatedPieces.
These models represent a single piece (or movement), and a group of pieces (and movements), respectively.
In a typical application, you will write analyzers but never call their methods directly.
On the other hand, you will almost never modify the models, but call their methods very often.
Models know how to run analyzers on the piece or pieces they represent, how to import music21 Score objects safely and efficiently, and how to find and access metadata.
The models also perform some level of automated error-handling and data-coordination.
In the future, the models may also help coordinate multiprocessing or results-caching, and they should be able to do this without a change in the API.

Known Issues and Limitations

	Limitation: By default, the vis framework does not use multiprocessing at all. If you install the optional packages for pandas, many of the pandas-based indexers and experimenters will use multi-threading in C. However, there are many opportunities to use multiprocessing where we have yet to do so. While we initially planned for the indexers and experimenters to use multiprocessing, we later decided that the high overhead of multiprocessing in Python means we should leave the multiprocessing implementation up to application developers—the realm of the WorkflowManager.

	Limitation: For users and developers concerned with counterpoint. The framework currently offers no way to sensitively process voice crossing in contrapuntal modules (“interval n-grams”). “Higher” and “lower” voices are consistently presented in score order. We have planned for several ways to deal with this situation, but the developer assigned to the task is a busy doctoral student and a novice programmer, so the solutions have not been fully implemented yet.

Install the Framework

You must install the VIS Framework before you use it.
Our recommended installation method depends on how you plan to use VIS.

If you plan to use VIS as a program or a library, you should install the Framework for deployment.
This includes users who will conduct their own analyses with the built-in modules, and users who will host an instance of the Counterpoint Web App [https://github.com/ELVIS_Project/web-vis].
A deployment installation will always be “stable” software, meaning that the software has been tested more thoroughly, and we can offer a higher assurance of correctness.

If you plan to use VIS as a framework, you should install the Framework for development.
This includes users who will write their own analyzers for the VIS Framework, and users who will modify existing modules.
A development installation allows you to use the most up-to-date versions of VIS, and even to suggest your improvements for inclusion in a VIS release, although these versions may crash more often and be less correct than deployment versions.

You may safely install the VIS Framework multiple times on the same computer, including a mixture of deployment and development installations.

Python 3

With the release of VIS Framework 2.1, VIS can run and is tested with Python 2.7, 3.3, and 3.4.
We recommend a Python 3 release for reasons of future compatibility.
The music21 developers have announced plans to drop support for Python 2.7 in calendar year 2016, at which point VIS will also drop support for Python 2.7.
Python 3.4 offers several major enhancements over Python 3.3, including improved speed of execution, so we recommend you use Python 3.4 if possible.

Install for Deployment

You must install the VIS Framework before you use it.
If you will not write extensions for the Framework, you may use pip to install the package from the Python Package Index (PyPI—https://pypi.python.org/pypi/vis-framework/). Run this command:

$ pip install vis-framework

You may also wish to install some or all of the optional dependencies:

	numexpr and bottleneck, which speed up pandas.

	openpyxl, which allows pandas to export Excel-format spreadsheets.

	cython and tables, which allow pandas to export HDF5-format binary files.

You may install optional dependencies in the same ways as VIS itself. For example:

$ pip install numexpr bottleneck

Install for Development

If you wish to install the VIS Framework for development work, we recommend you clone our Git repository from https://github.com/ELVIS-Project/vis/, or even make your own fork on GitHub.
You may also wish to checkout a particular version for development with the “checkout” command, as git checkout tags/vis-framework-1.2.3 or git checkout master.

If you installed git, but you need help to clone a repository, you may find useful information in the git documentation [http://git-scm.com/book/en/Git-Basics-Getting-a-Git-Repository#Cloning-an-Existing-Repository].

After you clone the VIS repository, you should install its dependencies (listed in the “requirements.py” file), for which we recommend you use pip.
From the main VIS directory, run pip install -r requirements.txt to automatically download and install the library dependencies.
We also recommend you run pip install -r optional_requirements.txt to install several additional packages that improve the speed of pandas and allow additional output formats (Excel, HDF5).
You may need to use sudo or su to run pip with administrator privileges, though we recommend using virtualenv.
If you do not have pip installed, use your package manager (the package is probably called python-pip—at least for users of Fedora, Ubuntu, and openSUSE).
If you are one of the unfortunate souls who uses Windows, or worse, Mac OS X, then clearly we come from different planets.
The pip documentation [http://www.pip-installer.org/en/latest/installing.html] may help you.

During development, you should usually start python (or ipython, etc.) from within the main “vis” directory to ensure proper importing.

The WorkflowManager is not required for the framework’s operation.
We recommend you use the WorkflowManager directly or as an example to write new applications.
The vis framework gives you tools to answer a wide variety of musical questions.
The WorkflowManager uses the framework to answer specific questions.
Please refer to Tutorial: Use the WorkflowManager for more information.

Optional: Test the Framework Before Use

You may wish to run the VIS Framework’s automated test suite before you use it, to confirm the installation was successful and is working as expected.

To run the test suite:

	Change into the main VIS directory (this will depend on your installation, but it will be similar to /usr/lib/python3.4/site-packages/vis-framework or /home/crantila/virtualenvs/vis-virtenv3/lib/python3.4/site-packages/vis-framework.

	If you installed VIS with a virtualenv, activate the virtualenv (e.g., source ~/virtualenvs/vis-virtenv3/bin/activate).

	Run the test script: python run_tests.py.

	Python prints a . character for every successful test, and an error or warning for every test that fails.

If Tests Fail

If you are using a deployment release and one or more of the automated tests fail, the most likely reason is that the installation was somehow unsuccessful.
This may result from using untested versions of a dependency, unexpectedly troublesome environment variables, or other factors.
If you used distribution packages (i.e., did not use virtualenv) and tests fail, we do recommend in that case installing with virtualenv.
Both with and without virtualenv, if tests fail, ensure you are using the exact package versions indicated in requirements.txt, since they are the versions used by the development team.

If you are using a development release and automated tests fail, check if those tests also fail on our “Travis CI” test server.
If so, the VIS development team is already aware of the failure and working toward a fix, since Travis will notify us by email if a test fails.
You may also try the version-related advice in the previous paragraph, though you may also wish to prepare a fix for the problem and submit it to us as a GitHub pull request.

Optional: Install R and ggplot2 for Graphs

If you wish to produce graphs with the VIS Framework, you must install an R interpreter and the ggplot2 library.
We test with 3.0.x versions of R.

If you use a “Windows” computer, download a pre-compiled R interpreter from http://cran.r-project.org.
If you use an “OS X” computer, you may download a pre-compiled binary or use a package from Homebrew, Fink, or MacPorts.
If you use a “Linux” computer (or “BSD,” etc.), check your package manager for an appropriate version of R.
You may have difficulty searching for “R,” as in yum search R, since it is a common letter, so we recommend you assume the package is called “R” and try to search only if that does not work.
If your distribution does not provide an R binary, or provides an older version than 3.0.0, install R from source code: http://cran.r-project.org/doc/manuals/r-release/R-admin.html.
For all operating systems, if you encounter a problem, the R manuals offer extensive help, but require careful attention.

After you install R, you must install the ggplot2 package.
If you installed R with your package manager, we recommend you search for and use the “ggplot” package, if one is provided.
(Distribution packages offer maximum compatibility, and take advantage of centralized software updates).

Use the following instructions, which work on all operating systems, if you do not have a distribution package for ggplot2.

	Start R (with superuser privileges, if not using Windows).

	Run the following command to install ggplot2:

install.packages("ggplot2")

	Run the following program to test R and ggplot2:

huron <- data.frame(year=1875:1972, level=as.vector(LakeHuron))
library(plyr)
huron$decade <- round_any(huron$year, 10, floor)
library(ggplot)
h <- ggplot(huron, aes(x=year))
h + geom_ribbon(aes(ymin=level-1, ymax=level+1))

Expect to see a chart like this:

[image: Ribbon chart produced by the *ggplot2* package in the R language.]
Image credit: taken from the “ggplot2” documentation [http://docs.ggplot2.org/current/geom_ribbon.html] on 26 November 2013; reused here under the GNU General Public License, version 2.

Quit R. You do not need to save your workspace:

q()

Optional: Install LilyPond for Annotated Scores

If you wish to produce annotated scores with the VIS Framework, you must install LilyPond.

The outputlilypond module, used by VIS, is targeted for 2.18.x versions of LilyPond, though it should also work with 2.16.x versions.
We do note recommend versions numbered 2.15.x, 2.17.x, and 2.19.x, since these are intended only for LilyPond developers, and they may crash or produce incorrect output.
If possible, we recommend you install LilyPond with your distribution’s package management system, or (on “OS X”) with a package manager such as Homebrew.
“Windows” users, and users who do not have a 2.16.x or 2.18.x version of LilyPond available from their package manager, may download and install a pre-compiled version of LilyPond from their website, lilypond.org [https://www.lilypond.org].

We very strongly discourage users from compiling LilyPond themselves.
There is very little chance that the benefits of self-compilation will outweigh the mental distress.

Tutorial: Use N-Grams to Find Melodic Patterns

Once you understand our framework’s architecture (explained in Design Principles), you can design new queries to answer your own questions.

Develop a Question

Our research question involves numerically comparing melodic styles of multiple composers.
To help focus our findings on the differences between composers, our test sets should consist of pieces that are otherwise as similar as possible.
One of the best ways to compare styles is using patterns, which are represented in the VIS Framework as n-grams: a unit of n objects in a row.
While the Framework’s n-gram functionality is fairly complex, in this tutorial we will focus on simple n-grams of melodic intervals, which will help us find melodic patterns.
The most frequently occurring melodic patterns will tell us something about the melodic styles of the composers under consideration: we will be pointed to some similarities and some differences that, taken together, will help us refine future queries.

Since n-grams are at the centre of the preliminary investigation described in this tutorial, we will use the corresponding NGramIndexer to guide our development.
We must answer two questions:

	What data will the NGramIndexer require to find melodic patterns?

	What steps are required after the NGramIndexer to produce meaningful results?

We investigate these two questions in the following sections.

What Does the NGramIndexer Require?

To begin, try reading the documentation for the NGramIndexer.
At present, this Indexer is the most powerful and most complicated module in the VIS Framework, and as such it may pose difficulties and behave in unexpected ways.
For this tutorial we focus on the basic functionality: the “n” and “vertical” settings.

TODO: continue revising here

For this simple preliminary investigation, we need only provide the melodic intervals of every part in an IndexedPiece.
The melodic intervals will be the “vertical” events; there will be no “horizontal” events.
We can change the “mark_singles” and “continuer” settings any time as we please.
We will probably want to try many different pattern lengths by changing the “n” setting.
If we do not wish our melodic patterns to include rests, we can set “terminator” to ['Rest'].

Thus the only information NGramIndexer requires from another analyzer is the melodic intervals, produced by HorizontalIntervalIndexer, which will confusingly be the “vertical” event.
As specified in its documentation, the HorizontalIntervalIndexer requires the output of the NoteRestIndexer, which operates directly on the music21 Score.

The first part of our query looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	from vis.analyzers.indexers import noterest, interval, ngram
from vis.models.indexed_piece import IndexedPiece

prepare inputs and output-collectors
pathnames = [list_of_pathnames_here]
ind_ps = [IndexedPiece(x) for x in pathnames]
interval_settings = {'quality': True}
ngram_settings = {'vertical': 0, 'n': 3} # change 'n' as required
ngram_results = []

prepare for and run the NGramIndexer
for piece in ind_ps:
 intervals = piece.get_data([noterest.NoteRestIndexer, interval.HorizontalIntervalIndexer], interval_settings)
 for part in intervals:
 ngram_results.append(piece.get_data([ngram.NGramIndexer], ngram_settings, [part])

After the imports, we start by making a list of all the pathnames to use in this query, then use a Python list comprehension to make a list of IndexedPiece objcects for each file.
We make the settings dictionaries to use for the interval then n-gram indexers on lines 7 and 8, but note we have not included all possible settings.
The empty ngram_results list will store results from the NGramIndexer.

The loop started on line 12 is a little confusing: why not use an AggregatedPieces object to run the NGramIndexer on all pieces with a single call to get_data()?
The reason is the inner loop, started on line 14: if we run the NGramIndexer on an IndexedPiece once, we can only index a single part, but we want results from all parts.
This is the special burden of using the NGramIndexer, which is flexible but not (yet) intelligent.
In order to index the melodic intervals in every part using the get_data() call on line 15, we must add the nested loops.

How Shall We Prepare Results?

For this analysis, I will simply count the number of occurrences of each harmonic interval pattern, which is called the “frequency.”
It makes sense to calculate each piece separately, then combine the results across pieces.
We’ll use the FrequencyExperimenter and ColumnAggregator experimenters for these tasks.
The FrequencyExperimenter counts the number of occurrences of every unique token in another index into a pandas.Series [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series], and the ColumnAggregator combines results across a list of Series or a DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame] (which it treats as a list of Series) into a single Series.

With these modifications, our program looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	from vis.analyzers.indexers import noterest, interval, ngram
from vis.analyzers.experimenters import frequency, aggregator
from vis.models.indexed_piece import IndexedPiece
from vis.models.aggregated_pieces import AggregatedPieces
from pandas import DataFrame

prepare inputs and output-collectors
pathnames = [list_of_pathnames_here]
ind_ps = [IndexedPiece(x) for x in pathnames]
interval_settings = {'quality': True}
ngram_settings = {'vertical': [0], 'n': 3} # change 'n' as required
ngram_freqs = []

prepare for and run the NGramIndexer
for piece in ind_ps:
 intervals = piece.get_data([noterest.NoteRestIndexer, interval.HorizontalIntervalIndexer], interval_settings)
 for part in intervals:
 ngram_freqs.append(piece.get_data([ngram.NGramIndexer, frequency.FrequencyExperimenter], ngram_settings, [part]))

aggregate results of all pieces
agg_p = AggregatedPieces(ind_ps)
result = agg_p.get_data([aggregator.ColumnAggregator], [], {}, ngram_freqs)
result = DataFrame({'Frequencies': result})

The first thing to note is that I modified the loop from the previous step by adding the FrequencyExperimenter to the get_data() call on line 18 that uses the NGramIndexer.
As you can see, the aggregation step is actually the easiest; it simply requires we create an AggregatedPieces object and call its get_data() method with the appropriate input, which is the frequency data we collected in the loop.

On line 22, result holds a Series with all the information we need!
To export your data to one of the supported formats (CSV, Excel, etc.) you must create a DataFrame and use one of the methods described in the pandas documentation [http://pandas.pydata.org/pandas-docs/stable/io.html].
The code on line 23 “converts” result into a DataFrame by giving the Series to the DataFrame constructor in a dictionary.
The key is the name of the column, which you can change to any value valid as a Python dictionary key.
Since the Series holds the frequencies of melodic interval patterns, it makes sense to call the column 'Frequencies' in this case.
You may also wish to sort the results by running result.sort() before you “convert” to a DataFrame.
You can sort in descending order (with the most common events at the top) with result.sort(ascending=False).

Next Steps

After the preliminary investigation, I would make my query more useful by using the “horizontal” and “vertical” functionality of the NGramIndexer to coordinate disparate musical elements that make up melodic identity.
Writing a new Indexer to help combine melodic intervals with the duration of the note preceding the interval would be relatively easy, since music21 knows the duration of every note.
A more subtle, but possibly more informative, query would combine melodic intervals with the scale degree of the preceding note.
This is a much more complicated query, since it would require an indexer to find the key at a particular moment (an extremely complicated question) and an indexer that knows the scale degree of a note.

Tutorial: Use the WorkflowManager

The script developed in Tutorial: Use N-Grams to Find Melodic Patterns is suitable for users doing exploratory work in an interactive Python shell.
When a query becomes regularized and you want it to be easily repeatable, or if you are an application developer making a graphical interface (whether on the Web or in a desktop application) you can take advantage of a further layer of abstraction offered by our WorkflowManager.
The WorkflowManager is designed as the point of interaction for end-user applications, providing a consistent interface and reference implementations of the steps involved in all queries.
While every new query will involve modifying a portion of the run() method’s code, you may be able to re-use the existing input and output methods without change.

The WorkflowManager‘s documentation describes its functionality:

	
class vis.workflow.WorkflowManager(pathnames)

	Warning: The WorkflowManager is deprecated as of VIS 3.0 and will be entirely removed in
VIS 4.0. Most of its functionality still works with VIS 3.0 but this is not guaranteed and it
is no longer being supported in development.

	Parameters:	pathnames (list or tuple of string or IndexedPiece) – A list of pathnames.

The WorkflowManager automates several common music analysis patterns for counterpoint.
Use the WorkflowManager with these four tasks:

	load(), to import pieces from symbolic data formats.

	run(), to perform a pre-defined analysis.

	output(), to output analysis results.

Before you analyze, you may wish to use these methods:

	metadata(), to get or set the metadata of a specific IndexedPiece managed by this WorkflowManager.

	settings(), to get or set a setting related to analysis (for example, whether to display the quality of intervals).

You may also treat a WorkflowManager as a container:

>>> wm = WorkflowManager(['piece1.mxl', 'piece2.krn'])
>>> len(wm)
2
>>> ip = wm[1]
>>> type(ip)
<class 'vis.models.indexed_piece.IndexedPiece'>

Port a Query into the WorkflowManager

Porting an existing query to the WorkflowManager involves fitting its code into the appropriate pre-existing methods.
The load() method prepares IndexedPiece objects and metadata by loading files for analysis.
The output() method outputs query results to a variety of formats, including spreadsheets, charts, and scores.
You will not usually need to modify load(), and you may not need to modify output() either.

The majority of development work will be spent in the run() method or its related hidden methods (like the _intervs(), _inteval_ngrams(), and other methods that are included in the default WorkflowManager).

TODO: continue revising here.

When I add my new query’s logic to the run() method, I get this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	def run(self):
 ngram_settings = {'vertical': [0], 'n': self.settigns(None, 'n')}
 ngram_freqs = []

 for i, piece in enumerate(self._data):
 interval_settings = {'quality': self.settings(i, 'interval quality')}
 intervals = piece.get_data(\
 [noterest.NoteRestIndexer, interval.HorizontalIntervalIndexer], \
 interval_settings)
 for part in intervals:
 ngram_freqs.append(\
 piece.get_data([ngram.NGramIndexer, frequency.FrequencyExperimenter], \
 ngram_settings, \
 [part]))

 agg_p = AggregatedPieces(ind_ps)
 self._result = agg_p.get_data([aggregator.ColumnAggregator], [], {}, ngram_freqs)

I made the following changes:

	Remove the instruction parameter from run(), since there is only one experiment.

	Use the import statements at the top of the file.

	Use self._data rather than building my own list of IndexedPiece objects (in enumerate() [https://docs.python.org/2.7/library/functions.html#enumerate] on line 5).

	Set interval_settings per-piece, and use the value from built-in WorkflowManager settings.

	Set n from the built-in WorkflowManager settings.

I could also use the WorkflowManager.settings() method to get other settings by piece or shared across all pieces, like 'simple intervals', which tells the HorizontalIntervalIndexer whether to display all intervals as their single-octave equivalents.

To run the same analysis as in Tutorial: Use N-Grams to Find Melodic Patterns, use the WorkflowManager like this:

	1
2
3
4
5
6
7
8
9

	from vis.workflow import WorkflowManager

pathnames = [list_of_pathnames]
work = WorkflowManager(pathnames)
work.load('pieces')
for i in xrange(len(work)):
 work.settings(i, 'quality', True)
work.run()
work.export('CSV', 'output_filename.csv')

This script actually does more than the program in Tutorial: Use N-Grams to Find Melodic Patterns because export() “converts” the results to a DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame], sorts, and outputs the results.

vis

	analyzers Package
	analyzers Package

	experimenter Module

	indexer Module

	Subpackages
	experimenters Package
	experimenters Package

	aggregator Module

	frequency Module

	barchart Module

	lilypond Module

	template Module

	indexers Package
	indexers Package

	active_voices Module

	cadence Module

	contour Module

	dissonance Module

	fermata Module

	interval Module

	meter Module

	ngram Module

	noterest Module

	offset Module

	over_bass Module

	repeat Module

	template Module

	windexer Module

	models Package
	models Package

	aggregated_pieces Module

	indexed_piece Module

workflow Module

Deprecated since version 3.0.0: The WorkflowManager is deprecated as of VIS 3.0.0 and will be entirely removed in VIS 4.0. It
was an important part of VIS in earlier versions but the iterative caching strategy implemented
in VIS 3.0 obviates the need for the WorkflowManager and so it is being phased out for
simplicity. Most of its functionality still works with VIS 3.0, however, it is no longer being
maintained or supported.

The workflow module holds the WorkflowManager, which automates several common music
analysis patterns for counterpoint. The TemplateWorkflow class is a template for writing
new WorkflowManager classes.

	
class vis.workflow.WorkflowManager(pathnames)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Warning: The WorkflowManager is deprecated as of VIS 3.0 and will be entirely removed in
VIS 4.0. Most of its functionality still works with VIS 3.0 but this is not guaranteed and it
is no longer being supported in development.

	Parameters:	pathnames (list or tuple of string or IndexedPiece) – A list of pathnames.

The WorkflowManager automates several common music analysis patterns for counterpoint.
Use the WorkflowManager with these four tasks:

	load(), to import pieces from symbolic data formats.

	run(), to perform a pre-defined analysis.

	output(), to output analysis results.

Before you analyze, you may wish to use these methods:

	metadata(), to get or set the metadata of a specific IndexedPiece managed by this WorkflowManager.

	settings(), to get or set a setting related to analysis (for example, whether to display the quality of intervals).

You may also treat a WorkflowManager as a container:

>>> wm = WorkflowManager(['piece1.mxl', 'piece2.krn'])
>>> len(wm)
2
>>> ip = wm[1]
>>> type(ip)
<class 'vis.models.indexed_piece.IndexedPiece'>

	
load(instruction='pieces', pathname=None)

	Import analysis data from long-term storage on a filesystem. This should primarily be used for the 'pieces' instruction, to control when the initial music21 import happens.

Use load() with an instruction other than 'pieces' to load results from a
previous analysis run by run().

Note

If one of the files imports as a music21.stream.Opus [http://web.mit.edu/music21/doc/moduleReference/moduleStream.html#music21.stream.Opus], the number of
pieces and their order will change.

	Parameters:	
	instruction (str [https://docs.python.org/2.7/library/functions.html#str]) – The type of data to load. Defaults to 'pieces'.

	pathname (str [https://docs.python.org/2.7/library/functions.html#str]) – The pathname of the data to import; not required for the 'pieces' instruction.

	Raises:	RuntimeError if the instruction is not recognized.

Instructions

Note

only 'pieces' is implemented at this time.

	'pieces', to import all pieces, collect metadata, and run NoteRestIndexer

	'hdf5' to load data from a previous output().

	'stata' to load data from a previous output().

	'pickle' to load data from a previous output().

	
metadata(index, field, value=None)

	Get or set a metadata field. The valid field names are determined by IndexedPiece
(refer to the documentation for metadata()).

A metadatum is a salient musical characteristic of a particular piece, and does not change
across analyses.

	Parameters:	
	index (int [https://docs.python.org/2.7/library/functions.html#int]) – The index of the piece to access. The range of valid indices is 0
through one fewer than the len() [https://docs.python.org/2.7/library/functions.html#len] of this WorkflowManager.

	field (str [https://docs.python.org/2.7/library/functions.html#str]) – The name of the field to be accessed or modified.

	value (object [https://docs.python.org/2.7/library/functions.html#object]) – If not None, the new value to be assigned to field.

	Returns:	The value of the requested field or None, if assigning, or if accessing a
non-existant field or a field that has not yet been initialized.

	Return type:	object [https://docs.python.org/2.7/library/functions.html#object]

	Raises:	TypeError if field is not a string.

	Raises:	AttributeError if accessing an invalid field.

	Raises:	IndexError if index is invalid for this WorkflowManager.

	
output(instruction, pathname=None, top_x=None, threshold=None)

	Output the results of the most recent call to run(), saved in a file. This method
handles both visualizations and symbolic output formats.

Note

For LiliyPond output, you must have called run() with count frequency
set to False.

Note

If count frequency is set to False for CSV, Stata, Excel, or HTML output,
the top_x and threshold parameters are ignored.

	Parameters:	
	instruction (str [https://docs.python.org/2.7/library/functions.html#str]) – The type of visualization to output.

	pathname (str [https://docs.python.org/2.7/library/functions.html#str]) – The pathname for the output. The default is
'test_output/output_result. Do not include a file-type “extension,” since we add
this automatically. For the LilyPond experiment, if there are multiple pieces in the
WorkflowManager, we append the piece’s index to the pathname.

	top_x (integer) – This is the “X” in “only show the top X results.” The default is None.
Does not apply to the LilyPond experiment.

	threshold (integer) – If a result is strictly less than this number, it will be left out. The
default is None. This is ignored for the 'LilyPond' instruction. Does not
apply to the LilyPond experiment.

	Returns:	The pathname(s) of the outputted visualization(s). Requesting a histogram always
returns a single string; requesting a score (or some scores) always returns a list.
The other formats will return a list if the count frequency setting is False.

	Return type:	str [https://docs.python.org/2.7/library/functions.html#str] or [str [https://docs.python.org/2.7/library/functions.html#str]]

	Raises:	RuntimeError for unrecognized instructions.

	Raises:	RuntimeError if run() has never been called.

	Raises:	RuntiemError if a call to R encounters a problem.

	Raises:	RuntimeError with LilyPond output, if we think you called run() with
count frequency set to True.

Instructions:

	'histogram': a histogram. Currently equivalent to the 'R histogram' instruction.

	'LilyPond': each score with annotations for analyzed objects.

	
	'R histogram': a histogram with ggplot2 in R. Currently equivalent to the 'histogram' instruction. In the future, this will be used to distinguish histograms

	produced with R from those produced with other libraries, like matplotlib or bokeh.

	'CSV': output a Series or DataFrame to a CSV file.

	'Stata': output a Stata file for importing to R.

	'Excel': output an Excel file for Peter Schubert.

	'HTML': output an HTML table, as used by the VIS Counterpoint Web App.

Note

We try to prevent you from requesting LilyPond output if you called run()
with count frequency set to True by raising a RuntimeError if count
frequency is True, or the number of pieces is not the same as the number of
results. It is still possible to call run() with count frequency set to
True in a way we will not detect. However, this always causes output() to
fail. The error will probably be a TypeError that says object of type
'numpy.float64' has no len().

	
run(instruction)

	Run an experiment’s workflow. Remember to call load() before this method.

	Parameters:	instruction (str [https://docs.python.org/2.7/library/functions.html#str]) – The experiment to run (refer to “List of Experiments” below).

	Returns:	The result of the experiment.

	Return type:	pandas.Series [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series] or pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame] or a list of lists of
pandas.Series [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series]. If 'count frequency' is set to False, the return type will
be a list of lists of series wherein the containing list has each piece in the
experiment as its elements (even if there is only one piece in the experiment, this will
be a list of length one). The contained lists contain the results of the experiment for
each piece where each element in the list corresponds to a unique voice combination in
an unlabelled and unpredictable fashion. Finally each series corresponds the experiment
results for a given voice combination in a given piece.

	Raises:	RuntimeError if the instruction is not valid for this
WorkflowManager.

	Raises:	RuntimeError if you have not called load().

	Raises:	ValueError if the voice-pair selection is invalid or unset.

List of Experiments

	'intervals': find the frequency of vertical intervals in 2-part combinations. All settings will affect analysis except 'n'. No settings are required; if you do not set 'voice combinations', all two-part combinations are included.

	'interval n-grams': find the frequency of n-grams of vertical intervals connected by the horizontal interval of the lowest voice. All settings will affect analysis. You must set the 'voice combinations' setting. The default value for 'n' is 2.

	
settings(index, field, value=None)

	Get or set a value related to analysis. The valid values are listed below.

A setting is related to this particular analysis, and is not a salient musical feature of
the work itself.

Refer to run() for a list of settings required or used by each experiment.

	Parameters:	
	index (int or None) – The index of the piece to access. The range of valid indices is 0 through
one fewer than the return value of calling len() [https://docs.python.org/2.7/library/functions.html#len] on this WorkflowManager. If
value is not None and index is None, you can set a field for all pieces.

	field (str [https://docs.python.org/2.7/library/functions.html#str]) – The name of the field to be accessed or modified.

	value (object or None) – If not None, the new value to be assigned to field.

	Returns:	The value of the requested field or None, if assigning, or if accessing a
non-existant field or a field that has not yet been initialized.

	Return type:	object or None

	Raises:	AttributeError if accessing an invalid field (see valid fields below).

	Raises:	IndexError if index is invalid for this WorkflowManager.

	Raises:	ValueError if index and value are both None.

Piece-Specific Settings

Pieces do not share these settings.

	offset interval: If you want to run the FilterByOffsetIndexer, specify a value for this setting. To avoid running the FilterByOffsetIndexer, set this to 0. This will become the quarterLength duration between observed offsets.

	filter repeats: If you want to run the FilterByRepeatIndexer, set this setting to True.

	voice combinations: If you want to consider certain specific voice combinations, set this setting to a list of a list of iterables. The following value would analyze the highest three voices with each other: '[[0,1,2]]' while this would analyze the every part with the lowest for a four-part piece: '[[0, 3], [1, 3], [2, 3]]'. This should always be a str that nominally represents a list (except the special values for 'all' parts at once or 'all pairs').

Shared Settings

All pieces share these settings. The value of index is ignored for shared settings, so
it can be anything.

	n: As specified in vis.analyzers.indexers.ngram.NGramIndexer.possible_settings.

	continuer: Determines the way unisons that arise from sustained notes in the lowest voice are represented. Note that if the FilterByOffsetIndexer is used, the continuer won’t get used. The default is ‘dynamic quality’ which sets to ‘P1’ if interval quality is set to True, and ‘1’ if it is set to False. This is given directly to the NGramIndexer. Refer to possible_settings.

	interval quality: If you want to display interval quality, set this setting to True.

	simple intervals: If you want to display all intervals as their single-octave equivalents, set this setting to True.

	include rests: If you want to include 'Rest' tokens as vertical intervals, change this setting to True. The default is False.

	count frequency: When set to True (the default), experiments will return the number of occurrences of each token (i.e., “each interval” or “each interval n-gram”). When set to False, the moment-by-moment analysis of each piece is retained. We recommend you only request spreadsheet-formatted output when count frequency is False.

	
vis.workflow.split_part_combo(key)

	Split a comma-separated list of two integer part names into a tuple of the integers.

	Parameters:	key (str [https://docs.python.org/2.7/library/functions.html#str]) – String with the part names.

	Returns:	The indices of parts referred to by the key.

	Return type:	tuple of int

>>> split_part_combo('5,6')
(5, 6)
>>> split_part_combo('234522,98100')
(234522, 98100)
>>> var = split_part_combo('1,2')
>>> split_part_combo(str(var[0]) + ',' + str(var[1]))
(1, 2)

analyzers Package

analyzers Package

Indexers produce an “index” of a symbolic musical score. Each index provides one type of data, and
each event can be attached to a particular moment in the original score. Some indexers produce
their index directly from the score, like the NoteRestIndexer, which describes
pitches. Others create new information by analyzing another index, like the
IntervalIndexer, which describes harmonic intervals between two-part combinations
in the score, or the FilterByRepeatIndexer, which removes consecutive identical
events, leaving only the first.

Analysis modules of the subclass Experimenter, by contrast,
produce results that cannot be attached to a moment in a score.

Indexers work only on single IndexedPiece instances. To analyze
many IndexedPiece objects together, use an experimenter with an
AggregatedPieces object.

experimenter Module

This module outlines the Experimenter base class, which helps with transforming time-attached
analytic information to other types.

	
class vis.analyzers.experimenter.Experimenter(index, settings=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Run an experiment on an IndexedPiece.

Use the “Experimenter.required_indices” attribute to know which Indexer subclasses should be
provided to this Experimenter’s constructor. If the list is None or [], use the
“Experimenter.required_experiments” attribute to know which Experimenter should be provided
to the constructor.

	
default_settings = None

	

	
possible_settings = []

	

indexer Module

The controllers that deal with indexing data from music21 Score objects.

	
class vis.analyzers.indexer.Indexer(score, settings=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

An object that manages creating an index of a piece, or part of a piece, based on one feature.

Use the required_score_type attribute to know what type of object is required in
__init__().

The name of the indexer, as stored in the DataFrame it returns, is the module name and
class name. For example, the name of the IntervalIndexer
is 'interval.IntervalIndexer'.

Caution

This module underwent significant changes for release 2.0.0. In particular, the
constructor’s score argument and the run() method’s return type have changed.

	
default_settings = {}

	Described in the TemplateIndexer.

	
make_return(labels, indices)

	Prepare a properly-formatted DataFrame as should be returned by any Indexer
subclass. We intend for this to be called by Indexer subclasses only.

The index of a label in labels should be the same as the index of the Series
to which it corresponds in indices. For example, if indices[12] is the tuba part,
then labels[12] might say 'Tuba'.

	Parameters:	
	labels (list of six.string_types) – Indices of the parts or the part combinations, or another descriptive label
as described in the indexer subclass documentation.

	indices (list of pandas.Series [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series] or a pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame]) – The results of the indexer.

	Returns:	A DataFrame with the appropriate MultiIndex [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.MultiIndex.html#pandas.MultiIndex] required
by the Indexer.run() method signature.

	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame]

	Raises:	IndexError if the number of labels and indices does not match.

	
possible_settings = {}

	Described in the TemplateIndexer.

	
required_score_type = None

	Described in the TemplateIndexer.

	
run()

	Make a new index of the piece.

	Returns:	The new indices. Refer to the section below.

	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame]

About Return Values:

Every indexer must return a DataFrame with a special kind of MultiIndex
that helps organize data across multiple indexers. Programmers making a new indexer should
follow the instructions in the TemplateIndexer
run() method to ensure this happens
properly.

Indexers return a DataFrame where the columns are indexed on two levels: the first
level is a string with the name of the indexer, and the second level is a string with the
index of the part, the indices of the parts in a combination, or some other value as
specified by the indexer.

This allows, for example:

>>> the_score = music21.converter.parse('sibelius_5-i.mei')
>>> the_score.parts[5]
(the first clarinet Part)
>>> the_notes = NoteRestIndexer(the_score).run()
>>> the_notes['noterest.NoteRestIndexer']['5']
(the first clarinet Series)
>>> the_intervals = IntervalIndexer(the_notes).run()
>>> the_intervals['interval.IntervalIndexer']['5,6']
(Series with vertical intervals between first and second clarinet)

This is more useful when you have a larger DataFrame with the results of multiple
indexers. Refer to Indexer.combine_results() to see how that works.

>>> some_results = Indexer.combine_results([the_notes, the_intervals])
>>> some_results['noterest.NoteRestIndexer']['5']
(the first clarinet Series)
>>> some_results['interval.IntervalIndexer']['5,6']
(Series with vertical intervals between first and second clarinet)
>>> some_results.to_hdf('brahms3.h5', 'table')

After the call to to_hdf() [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.to_hdf.html#pandas.DataFrame.to_hdf], your results are stored in the
‘brahms3.h5’ file. When you load them (very quickly!) with the read_hdf() [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.read_hdf.html#pandas.read_hdf]
method, the DataFrame returns exactly as it was.

Note

In release 1.0.0, it was sometimes acceptable to use undocumented return values;
from release 1.1.0, this is no longer necessary, and you should avoid it. In a future
release, the IndexedPiece class will depend on indexers following these rules.

	
vis.analyzers.indexer.series_indexer(parts, indexer_func)

	Perform the indexation of a part or part combination. This is a module-level function designed
to ease implementation of multiprocessing.

If your Indexer has settings, use the indexer_func() to adjust for them.

	Parameters:	
	parts (list of pandas.Series [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series]) – A list of at least one Series object. Every new event, or change of
simlutaneity, will appear in the outputted index. Therefore, the new index will contain at
least as many events as the inputted Series with the most events. This is not a
DataFrame, since each part will likely have different offsets.

	indexer_func (function) – This function transforms found events into some other string.

	Returns:	The pipe_index argument and the new index. The new index is a pandas.Series [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series]
where every element is a string. The Index of the
Series corresponds to the quarterLength offset of the event in the inputted
Stream.

	Return type:	2-tuple of object and pandas.Series [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series]

	Raises:	ValueError if there are multiple events at an offset in any of the inputted
Series.

Subpackages

	experimenters Package
	experimenters Package

	aggregator Module

	frequency Module

	barchart Module

	lilypond Module

	template Module

	indexers Package
	indexers Package

	active_voices Module

	cadence Module

	contour Module

	dissonance Module

	fermata Module

	interval Module

	meter Module

	ngram Module

	noterest Module

	offset Module

	over_bass Module

	repeat Module

	template Module

	windexer Module

experimenters Package

experimenters Package

aggregator Module

Aggregating experimenters.

	
class vis.analyzers.experimenters.aggregator.ColumnAggregator(index, settings=None)

	Bases: vis.analyzers.experimenter.Experimenter

(Arguments for the constructor are listed below).

Experiment that aggregates data from columns of a DataFrame, or a list of
DataFrame objects, by summing each row. Values from columns named 'all' will not
be included in the aggregated results. You may provide a 'column' setting to guide the
experimenter to include only certain results.

Example 1

Inputting single DataFrame like this:

	Index
	piece_1
	piece_2

	M3
	12
	24

	m3
	NaN
	36

	P5
	3
	9

Yields this DataFrame:

	Index
	‘aggregator.ColumnAggregator’

	M3
	36

	m3
	36

	P5
	12

Example 2

Inputting two DataFrame objects is similar.

	Index
	piece_1

	M3
	12

	P5
	3

	Index
	piece_2

	M3
	24

	m3
	36

	P5
	9

The result is the same DataFrame:

	Index
	‘aggregator.ColumnAggregator’

	M3
	36

	m3
	36

	P5
	12

Example 3

You may also give a DataFrame (or a list of DataFrame objects) that have a
pandas.MultiIndex [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.MultiIndex.html#pandas.MultiIndex] as produced by subclasses of Indexer.
In this case, use the 'column' setting to indicate which indexer’s results you wish to
aggregate.

	Index
	‘frequency.FrequencyExperimenter’
	‘feelings.FeelingsExperimenter’

	‘0,1’
	‘1,2’
	‘Christopher’
	‘Alex’

	M3
	12
	24
	‘delight’
	‘exuberance’

	m3
	NaN
	36
	‘sheer joy’
	‘nonchalance’

	P5
	3
	9
	‘emptiness’
	‘serenity’

If 'column' is 'frequency.FrequencyExperimenter', yet again you will have this
DataFrame:

	Index
	‘aggregator.ColumnAggregator’

	M3
	36

	m3
	36

	P5
	12

	
default_settings = {'column': None}

	

	
possible_settings = ['column']

	

	Parameters:	'column' (str [https://docs.python.org/2.7/library/functions.html#str]) – The column name to use for aggregation. The default is None, which
aggregates across all columns. If you set this to 'all', it will override the default
behaviour of not including columns called 'all'.

	
run()

	Run the ColumnAggregator experiment.

	Returns:	A Series with an index that is the combination of all indices of the provided pandas objects, and the value is the sum of all values in the pandas objects.

	Return type:	pandas.Series [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series]

Example:

import music21
from vis.analyzers.indexers import noterest
from vis.analyzers.experimenters import aggregator, frequency

score = music21.converter.parse(‘example.xml’)
notes = noterest.NoteRestIndexer(score).run()

freqs = frequency.FrequencyExperimenter(notes).run()
agg = aggregator.ColumnAggregator(freqs).run()
print(agg)

frequency Module

Experimenters that deal with the frequencies (number of occurrences) of events.

	
class vis.analyzers.experimenters.frequency.FrequencyExperimenter(index, settings=None)

	Bases: vis.analyzers.experimenter.Experimenter

Calculate the number of occurrences of objects in an index.

Use the 'column' setting to choose only the results of one previous analyzer. For example,
if you wanted to calculate the frequency of vertical intervals, you would specify
'interval.IntervalIndexer'. This would avoid counting, for example, the horizontal intervals
if they were also present.

	
default_settings = {'column': None}

	

	
possible_settings = ['column']

	

	Parameters:	'column' (str [https://docs.python.org/2.7/library/functions.html#str]) – The column name to use for counting frequency. The default is None,
which counts all columns. Use this to count only the frequency of one previous analyzer.

	
run()

	Run the FrequencyExperimenter.

	Returns:	The result of the experiment. Data is stored such that column labels correspond to the part (combinations) totalled in the column, and row labels correspond to a type of the kind of objects found in the given index. Note that all columns are totalled in the “all” column, and that not every part combination will have every interval; in case an interval does not appear in a part combination, the value is numpy.NaN.

	Return type:	list of pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame]

Example:

import music21
from vis.analyzers.indexers import noterest
from vis.analyzers.experimenters import frequency

score = music21.converter.parse(‘example.xml’)
notes = noterest.NoteRestIndexer(score).run()

freqs = frequency.FrequencyExperimenter(notes).run()
print(freqs)

barchart Module

The experimenters in this module all generate bar charts. Currently the only class is
RBarChart, which uses Rscript to run a script in the R programming language.

	
class vis.analyzers.experimenters.barchart.RBarChart(index, settings=None)

	Bases: vis.analyzers.experimenter.Experimenter

Use Rscript to run a bar-chart-generating script in the R programming language.

	
OUTPUT_TYPES = ('eps', 'ps', 'tex', 'pdf', 'jpeg', 'tiff', 'png', 'bmp', 'svg')

	R additionally supports the 'wmf' format, which is for Windows only. However, since VIS
will likely never run on Windows, and since Windows also supports all the other formats, we
do not allow 'wmf' in this experimenter.

	
RSCRIPT_PATH = '/usr/bin/Rscript'

	Full pathname to the Rscript program. If this doesn’t work on your system, you’ll have a
hard time getting RbarChart to work.

	
default_settings = {'column': 'freq', 'token': 'objects', 'type': 'png', 'nr_pieces': None}

	Deafult values for the optional settings.

	
possible_settings = ('pathname', 'column', 'type', 'token', 'nr_pieces')

	Only the 'pathname' setting is required. For default values, refer to the descriptions below
and the values in default_settings.

	Parameters:	
	'pathname' (str [https://docs.python.org/2.7/library/functions.html#str]) – The pathname to use for the outputted file.

	'column' (str [https://docs.python.org/2.7/library/functions.html#str]) – The column of the DataFrame to choose for outputting. If the
data you wish to include in the chart is not in the 'freq' column, use this setting to
determine which column is used instead.

	'type' (str [https://docs.python.org/2.7/library/functions.html#str]) – The output type, chosen from OUTPUT_TYPES.

	'token' (str [https://docs.python.org/2.7/library/functions.html#str]) – The “token” to pass onto the bar chart script, telling it what type of
object is being displayed. This should either be a string ending with '-gram', the
word 'interval' or 'objects', which is the default. Refer to the note below.

	'nr_pieces' (str [https://docs.python.org/2.7/library/functions.html#str] or int [https://docs.python.org/2.7/library/functions.html#int]) – The number of pieces whose results are represented in the outputted
chart. If present, the R script uses this to write “for X pieces” in the chart’s title.
The default is None, which does not include this statement.

Note

About the 'token' Setting.

The 'token' setting is modified and sent forward to the R script, which uses it to
determine the type of object portrayed on the chart. If the token is set to 'interval',
the R script will print that “Intervals” are being displayed; if the token is set to a
string ending with '-gram', the script will print that whatever-grams are being
displayed; if the token is set to None, the script will print that “Objects” are being
displayed.

	
run()

	Produce the bar chart.

	Returns:	The pathname of the outputted PNG file containing a bar chart.

	Return type:	string [https://docs.python.org/2.7/library/string.html#module-string]

	Raises:	RuntimeError if the call to Rscript fails for any reason. The return
code and command’s output are included as the RuntimeError.args[0] attribute.

lilypond Module

template Module

Template for writing a new experimenter. Use this class to help write a new :class`Experimenter` subclass. The TemplateExperimenter does nothing, and should only be used by programmers.

	
class vis.analyzers.experimenters.template.TemplateExperimenter(index, settings=None)

	Bases: vis.analyzers.experimenter.Experimenter

Template for an Experimenter subclass.

	
default_settings = {}

	The default values for settings named in possible_settings. If a setting doesn’t have
a value in this constant, then it must be specified to the constructor at runtime, or the
constructor should raise a RuntimeException.

	
possible_settings = ['fake_setting']

	This is a list of strings that are the names of the settings used in this experimenter.
Specify the types and reasons for each setting as though it were an argument list, like this:

	Parameters:	'fake_setting' (boolean) – This is a fake setting.

	
run()

	Run an experiment on a piece.

	Returns:	The result of the experiment. Each experiment should describe its data storage.

	Return type:	pandas.Series [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series] or pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame]

indexers Package

indexers Package

active_voices Module

	
class vis.analyzers.indexers.active_voices.ActiveVoicesIndexer(score, settings=None)

	Bases: vis.analyzers.indexer.Indexer

Indexer that counts the number of voices active at each offset. It
can either find all voices sounding, or only the voices that are
attacking, depending on the settings passed.

Call this indexer via the get_data() method of either an
indexed_piece object or an aggregated_pieces object (see
example below). If nothing is passed in the ‘data’ argument of the
call to get_data(), then the default is to process the
NoteRestIndexer results of the indexed_piece in question.
You can pass some other DataFrame in the ‘data’ argument, but it is
discouraged.

	Parameters:	
	'attacked' (boolean) – When true, only counts the voices that are
attacking at each offset. Defaults to false.

	'show_all' (boolean) – When true, shows the results at all offsets,
even if there is not change. Defaults to
false.

Examples:

Prepare an indexed piece:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('path_to_piece.xml')

Get the ActiveVoicesIndexer results with the default settings:

>>> ip.get_data('active_voices')

Get the ActiveVoicesIndexer results with specified settings:

>>> av_setts = {
 'attacked': True,
 'show_all': True
 }
>>> ip.get_data('active_voices', settings=av_setts)

	
default_settings = {'show_all': False, 'attacked': False}

	

	
possible_settings = ['attacked', 'show_all']

	

	
required_score_type = 'pandas.DataFrame'

	

	
run()

	

	Returns:	new index of the active voices in the piece.

	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame]

	
vis.analyzers.indexers.active_voices.indexer1(x)

	Used internally by the ActiveVoicesIndexer to count
individualevents.

cadence Module

	
class vis.analyzers.indexers.cadence.CadenceIndexer(score, settings=None)

	Bases: vis.analyzers.indexer.Indexer

Using OverBassIndexer and FermataIndexer results, finds
cadences as lists of events in the approach to a fermata.

Call this indexer via the get_data() method of either an
indexed_piece object or an aggregated_pieces object (see
example below).

	Parameters:	
	'length' (int [https://docs.python.org/2.7/library/functions.html#int]) – The length of the cadence, or how many events
happen before a fermata.

	'voice' (str [https://docs.python.org/2.7/library/functions.html#str] or int [https://docs.python.org/2.7/library/functions.html#int]) – The voice in which you want to look for
fermatas. The default value for this is ‘all’.

Example:

Prepare an indexed piece and import pandas:

>>> from vis.models.indexed_piece import Importer
>>> import pandas
>>> ip = Importer('path_to_piece.xml')

Prepare OverBassIndexer and FermataIndexer results. For more
specific advice on how to do this, please see the documentation of
those two indexers. These two DataFrames should be passed as a list.
For simplicity, including the FermataIndexer results is
optional, and this example shows how to use the CadenceIndexer
without explicitly providing the FermataIndexer results, so the
‘data’ argument is a singleton list.

>>> overbass_input_dfs = [ip.get_data('noterest'),
 ip.get_data('vertical_interval')]
>>> ob_setts = {
 'type': 'notes'
 }
>>> overbass = ip.get_data('over_bass', data=overbass_input_dfs,
 settings=ob_setts)

Get the CadenceIndexer results with specified settings:

>>> ca_setts = {'length': 3}
>>> ip.get_data('cadence', data=[overbass], settings=ca_setts)

	
possible_settings = ['length', 'voice']

	

	
required_score_type = 'pandas.DataFrame'

	

	
run()

	Makes a new index of the cadences in the piece.

	Returns:	A DataFrame of the cadences.

	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame]

contour Module

	
vis.analyzers.indexers.contour.COM_matrix(contour)

	Creates a matrix representing the contour given.

	
class vis.analyzers.indexers.contour.ContourIndexer(score, settings=None)

	Bases: vis.analyzers.indexer.Indexer

Indexes the contours of a given length in a piece, where contour is
a way of numbering the relative heights of pitches, beginning at 0
for the lowest pitch.

Call this indexer via the get_data() method of either an
indexed_piece object or an aggregated_pieces object (see
example below). If nothing is passed in the ‘data’ argument of the
call to get_data(), then the default is to process the
NoteRestIndexer results of the indexed_piece in question.
You can pass some other DataFrame to the ‘data’ argument, but it is
discouraged.

	Parameters:	'length' (int [https://docs.python.org/2.7/library/functions.html#int]) – This is the length of the contour you want to
look at.

Example:

Prepare an indexed piece:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('path_to_piece.xml')

Get the ContourIndexer results with specified settings and
processing the notes and rests:

>>> notes = ip.get_data('noterest')
>>> contour_setts = {'length': 3}
>>> ip.get_data('contour', data=notes, settings=contour_setts)

	
possible_settings = ['length']

	

	
required_score_type = 'pandas.DataFrame'

	

	
run()

	Makes a new index of the contours in the piece.

	Returns:	A DataFrame of the contours.

	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame]

	
vis.analyzers.indexers.contour.compare(contour1, contour2)

	Additional method to compare COM_matrices.

	
vis.analyzers.indexers.contour.getContour(notes)

	Method used internally by the ContourIndexer class to convert
pitches into contour numbers.

dissonance Module

	
class vis.analyzers.indexers.dissonance.DissonanceIndexer(score, settings=None)

	Bases: vis.analyzers.indexer.Indexer

Indexer that locates vertical dissonances between pairs of voices in
a piece. It then categorizes intervals as consonant or dissonant and
in the case of fourths (perfect or augmented) and diminished fifths
it examines the other parts sounding with that fourth or fifth (if
there are any) to see if the interval can be considered consonant.
This dissonance analysis allows for the assignment of a dissonance
type name or a consonance label for each voice at each offset. This
last step is the DataFrame that gets returned.

The score type must be a list of dataframes of the results of the
following indexers (order matters): beatstrength, duration,
horizontal, vertical. To simplify things, however, it is better to
use the get_data() on an indexed_piece object to get results
from the dissonance indexer as per the example below.

The results of the disonance indexer are in the form of one cell in
the resultant dataframe in each part at every offset where there is
a new note, rest, or chord onset in any part. These cells contain
one-character strings which are an abbreviation of what the
dissonance type for that part at that moment is. The abbreviations
correspoond to the following dissonance types:

	
	‘Q’: Dissonant third quarter (special type of accented passing

	tone)

	‘D’: Descending passing tone

	‘R’: Ascending (“rising”) passing tone

	‘L’: Lower neighbour

	‘U’: Upper neighbour

	‘S’: Suspension

	‘F’: Fake suspension

	‘f’: Diminished fake suspension

	‘A’: Anticipation

	‘C’: Nota cambiata

	‘H’: Chanson idiom

	‘E’: Echappée (escape tone)

	
	‘-‘: Either no dissonance, or the part in question is not

	considered to be the dissonant note of the dissonance it’s in

Example:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('symbolic_notation_file_location.xml')
>>> ip.get_data('dissonance')

	
check_4s_5s(pair_name, iloc_indx, suspect_diss, simuls)

	This function evaluates whether P4’s, A4’s, and d5’s should be
considered consonant based whether or not the lower voice of the
suspect_diss forms an interval that causes us to deem the fourth
or fifth consonant, as determined by the cons_makers list below.
The function should be called once for each potentially
consonant fourth or fifth.

	Parameters:	
	pair_name (String in the format '0,2' if the pair in
question is S and T in an SATB texture.) – Name of pair that has the potentially
consonant fourth or fifth.

	iloc_indx (Integer.) – Pandas iloc number of interval’s row in
dataframe.

	suspect_diss (String.) – Interval name with quality and direction
(i.e. nothing or ‘-‘) that corresponds to the fourth or
fifth to be examined.

	Returns:	string representing analysis of fourth or fifth in
question where a ‘C’ or ‘D’ has been prepended to the
interval name with quality to show that it was considered
consonant or dissonant respectively.

	Return type:	string [https://docs.python.org/2.7/library/string.html#module-string]

	
classify(indx, pair, event, prev_event)

	Checks the dissonance definitions to find a suitable label for
the dissonance passed. If no identifiable dissonance type
matches, returns an unknown dissonance label. Omits checking the
pair if either voice was previously given a known dissonance
label still in vigour at the given offset. It only takes its
four arguments to pass them on to the dissonance-type functions
it calls.

	Returns:	A 5-tuple that can be unpacked to assign separate
labels for each voice in the pair. If none of the known
dissonance types were detected the 5-tuple will have the
labels to mark one or both of the voices as dissonant.

	Return type:	tuple [https://docs.python.org/2.7/library/functions.html#tuple]

	
required_score_type = 'pandas.DataFrame'

	

	
run()

	Make a new index of the piece which consists of a DataFrame with
as many columns as there are voices in the piece. The index is
the offset of the dissonance analyses. Another DataFrame
(diss_ints) is calculated but not returned. It is in the
same format as the IntervalIndexer (i.e. a DataFrame of
Series where each series corresponds to the intervals in a given
voice pair). The difference between this and the interval
indexer is that this one figures out whether fourths or
diminished fifths should be considered consonant for the
purposes of dissonance classification. diss_ints is not
calculated separately because it essentially consists of the
same loop needed for dissonance classification.

	Returns:	A DataFrame of the new indices. The columns
have a MultiIndex.

	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame]

fermata Module

Index fermatas.

	
class vis.analyzers.indexers.fermata.FermataIndexer(score, settings=None)

	Bases: vis.analyzers.indexer.Indexer

Index Fermata [http://web.mit.edu/music21/doc/moduleReference/moduleExpressions.html#music21.expressions.Fermata].

Finds :class:`~music21.expressions.Fermata`s.

Example:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('pathnameToScore.xml')
>>> ip.get_data('fermata')

	
required_score_type = 'stream.Part'

	

	
vis.analyzers.indexers.fermata.indexer_func(event)

	Used internally by FermataIndexer. Inspects

	Note [http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Note] and Rest [http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Rest] and

	returns u'Fermata' if a fermata is associated, else NaN.

	Parameters:	event (iterable of music21.note.Note [http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Note] or
music21.note.Rest [http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Rest]) – An iterable (nominally a Series [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series]) with
an object to convert. Only the first object in the iterable is
processed.

	Returns:	If the first object in the list is a contains a
Fermata [http://web.mit.edu/music21/doc/moduleReference/moduleExpressions.html#music21.expressions.Fermata], string u'Fermata'
is returned. Else, NaN.

	Return type:	str [https://docs.python.org/2.7/library/functions.html#str]

interval Module

Index intervals. Use the IntervalIndexer to find vertical
(harmonic) intervals between two parts. Use the
HorizontalIntervalIndexer to find horizontal (melodic)
intervals in the same part.

	
class vis.analyzers.indexers.interval.HorizontalIntervalIndexer(score, settings=None)

	Bases: vis.analyzers.indexers.interval.IntervalIndexer

Use music21.interval.Interval [http://web.mit.edu/music21/doc/moduleReference/moduleInterval.html#music21.interval.Interval] to create an index of the
horizontal (melodic) intervals in a single part. You should provide
the result of NoteRestIndexer.
Alternatively you could provide the results of the
:class:’~vis.analyzers.offset.FilterByOffsetIndexer’ if you want to
check for horizontal intervals at regular durational intervals.
These settings apply to the HorizontalIntervalIndexer
in addition to the settings available from the
IntervalIndexer.

	Parameters:	
	'simple or compound' (str [https://docs.python.org/2.7/library/functions.html#str]) – Whether intervals should be
represented in their single-octave form (either 'simple' or
'compound').

	or string 'quality' (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Whether to display diatonic
intervals without quality (either False or “diatonic no
quality”), diatonic intervals with quality (either True or
‘diatonic with quality’), chromatic intervals (use ‘chromatic’),
or interval class intervals (use ‘interval class’).

	'directed' (boolean) – Whether we distinguish between which
note is higher than the other. If True (default), prepends a ‘-‘
before everything else if the first note passed is higher than
the second.

	'horiz_attach_later' (boolean) – If True, the offset for a
horizontal interval is the offset of the later note in the
interval. The default is False, which gives horizontal
intervals the offset of the first note in the interval.

	'mp' (boolean) –
	Multiprocesses when True (default) or

	processes serially when False.

Example:

>>> from vis.models.indexed_piece import Importer
>>> settings = {
 'quality': 'interval class',
 'simple or compound': 'simple',
 'directed': False
 }
>>> ip = Importer('pathnameToScore.xml')
>>> ip.get_data('horizontal_interval', settings)

	
default_settings = {'directed': True, 'simple or compound': 'compound', 'horiz_attach_later': False, 'quality': False, 'mp': True}

	

	
run()

	Make a new index of the piece.

	Returns:	The new indices. Refer to the example below.

	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame]

	
class vis.analyzers.indexers.interval.IntervalIndexer(score, settings=None)

	Bases: vis.analyzers.indexer.Indexer

Use music21.interval.Interval [http://web.mit.edu/music21/doc/moduleReference/moduleInterval.html#music21.interval.Interval] to create an index of the
vertical (harmonic) intervals between two-part combinations.

You should provide the result of the
NoteRestIndexer. However,
to increase your flexibility, the constructor requires only a list
of Series. You may also provide a DataFrame
exactly as outputted by the NoteRestIndexer. The settings
for the IntervalIndexer are as follows:

	Parameters:	
	'simple or compound' (str [https://docs.python.org/2.7/library/functions.html#str]) – Whether intervals should be
represented in their single-octave form (either 'simple' or
'compound').

	or string 'quality' (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Whether to display diatonic
intervals without quality (either False or “diatonic no
quality”), diatonic intervals with quality (either True or
‘diatonic with quality’), chromatic intervals (use ‘chromatic’),
or interval class intervals (use ‘interval class’).

	'directed' (boolean) – Whether we distinguish between which
note is higher than the other. If True (default), prepends a ‘-‘
before everything else if the first note passed is higher than
the second.

	'mp' (boolean) – Multiprocesses when True (default) or
processes serially when False.

Example:

>>> from vis.models.indexed_piece import Importer
>>> settings = {
 'quality': 'chromatic',
 'simple or compound': 'simple',
 'directed': True
 }
>>> ip = Importer('pathnameToScore.xml')
>>> ip.get_data('vertical_interval', settings)

	
default_settings = {'directed': True, 'simple or compound': 'compound', 'quality': False, 'mp': True}

	

	
required_score_type = 'pandas.DataFrame'

	

	
run()

	Make a new index of the piece.

	Returns:	A DataFrame of the new indices. The columns
have a MultiIndex; refer to the example below for
more details.

	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame]

	
class vis.analyzers.indexers.interval.IntervalReindexer(score, settings=None)

	Bases: vis.analyzers.indexers.interval.HorizontalIntervalIndexer

This indexer is only meant to ever be called indirectly to simplify
caching of the results of the IntervalIndexer and the
HorizontalIntervalIndexer. It takes the most
information-rich type of interval analysis we offer (i.e. compound,
directed intervals with diatonic quality) and re-indexes them to
match whatever settings the user has requested. This is much faster,
because it takes an entire interval as its input, rather than two
notes, and therefore there are considerably fewer memos in its
memoization scheme.

	
run()

	

meter Module

Indexers for metric concerns.

	
class vis.analyzers.indexers.meter.DurationIndexer(score, part_streams)

	Bases: vis.analyzers.indexer.Indexer

Make an index of the durations of all Note, Rest,
and Chord objects. These are calculated based on the
difference in index positions of consecutive events.

Note

Unlike nearly all other indexers, this indexer returns a
Series of float objects rather than unicode
objects. Also unlike most other indexers, this indexer does not have
an indexer func.

Example:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('pathnameToScore.xml')
>>> ip.get_data('duration')

	
required_score_type = 'pandas.DataFrame'

	

	
run()

	Make a new index of the piece.

	Returns:	The new indices of the durations of each note or rest
event in a score. Note that each item is a float, rather
than the usual basestring.

	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame]

	
class vis.analyzers.indexers.meter.MeasureIndexer(score)

	Bases: vis.analyzers.indexer.Indexer

Make an index of the measures in a piece. Time signatures changes do
not cause a problem. Note that unlike most other indexers this one
returns integer values >= 0. Using music21’s part.measureTemplate()
function is an alternative but it turned out to be much less
efficient to looping over the piece and doing it this way makes this
indexer just like all the other stream indexers in VIS.

Example:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('pathnameToScore.xml')
>>> ip.get_data('measure')

	
required_score_type = 'pandas.DataFrame'

	

	
class vis.analyzers.indexers.meter.NoteBeatStrengthIndexer(score)

	Bases: vis.analyzers.indexer.Indexer

Make an index of the
beatStrength [http://web.mit.edu/music21/doc/moduleReference/moduleBase.html#music21.base.Music21Object.beatStrength] for all
Note, Rest, and Chord objects.

Note

Unlike nearly all other indexers, this indexer returns a
Series of float objects rather than unicode
objects.

Example:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('pathnameToScore.xml')
>>> ip.get_data('beat_strength')

	
required_score_type = 'pandas.DataFrame'

	

	
vis.analyzers.indexers.meter.beatstrength_ind_func(event)

	Used internally by NoteBeatStrengthIndexer. Convert
Note [http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Note] and Rest [http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Rest] objects
into a string.

	Parameters:	event – A music21 note, rest, or chord object which get
queried for its beat strength. :type event: A music21 note,
rest, or chord object or NaN.

	Returns:	The beatStrength [http://web.mit.edu/music21/doc/moduleReference/moduleBase.html#music21.base.Music21Object.beatStrength] of
the event which is dependent on the prevailing time signature.

	Return type:	float [https://docs.python.org/2.7/library/functions.html#float]

	
vis.analyzers.indexers.meter.measure_ind_func(event)

	The function that indexes the measure numbers of each part in a
piece. Unlike most other indexers, this one returns int values.
Measure numbering starts from 1 unless there is a pick-up measure
which gets the number 0. This can handle changes in time signature
without problems.

	Parameters:	event (A music21 measure object or NaN.) – A music21 measure object which get queried for its
“number” attribute.

	Returns:	The number attribute of the passed music21 measure.

	Return type:	int [https://docs.python.org/2.7/library/functions.html#int]

ngram Module

Indexer to find k-part any-object n-grams. This file is a
re-implimentation of the previous ngram_indexer.py file.

	
class vis.analyzers.indexers.ngram.NGramIndexer(score, settings=None)

	Bases: vis.analyzers.indexer.Indexer

Indexer that finds k-part n-grams from other indices.

The indexer requires at least one “vertical” index, and supports
“horizontal” indices that seem to “connect” instances in the
vertical indices. Although we use “vertical” and “horizontal” to
describe these index types, because the class is an abstraction of
two-part interval n-grams, you can supply any information as either
type of index. If you want one-part melodic n-grams for example, you
should supply the relevant interval information as the “vertical”
component. The “vertical” and “horizontal” indices can contain an
arbitrary number of observations that can get condensed into one
value or kept separate in different columns. There is no
relationship between the number of index types, though there must be
at least one “vertical” index.

The 'vertical' and 'horizontal' settings determine which
columns of the dataframes in score are included in the n-gram
output. score is a list of two dataframes, the vertical
observations DataFrame and the horizontal observations
DataFrame.

The format of the vertical and horizontal settings is very important
and will decide the structure of the resulting n-gram results. Both
the vertical and horizontal settings should be a list of tuples. If
the optional horizontal setting is passed, its list should be of the
same length as that of the vertical setting. Inside of each tuple,
enter the column names of the observations that you want to include
in each value. For example, if you want to make 3-grams of notes in
the tenor in a four-voice choral, use the following settings (NB:
there is no horizontal element in this simple query so no horizontal
setting is passed. In this scenario you would need to pass the
noterest indexer results as the only dataframe in the “score” list
of dataframes.):

>>> settings = {
 'n': 3,
 'vertical': [('2',)]
 }

If you want to look at the 4-grams in the interval pairs between the
bass and soprano of a four-voice choral and track the melodic
motions of the bass, the score argument should be a 2-item list
containing the IntervalIndexer results dataframe and the
HorizontalIntervalIndexer dataframe. Note that the
HorizontalIntervalIndexer results must have been calculated
with the 'horiz_attach_later' setting set to True (this is
in order to avoid an indexing nightmare). The settings dictionary to
pass to this indexer would be:

>>> settings = {
 'n': 4,
 'vertical': [('0,3',)],
 'horizontal': [('3',)]
 }

If you want to get ‘figured-bass’ 2-gram output from this same
4-voice choral, use the same 2-item list for the score argument, and
then put all of the voice pairs that sound against the bass in the
same tuple in the vertical setting. Here’s what the settings should
be:

>>> settings = {
 'n': 2,
 'vertical': [('0,3', '1,3', '2,3')],
 'horizontal': [('3',)]
 }

In the example above, if you wanted stacks of vertical events
without the horizontal connecting events, you would just omit the
'horizontal' setting from the settings dictionary and also only
include the vertical observations in the score list of
dataframes.

If instead you want to look at all the pairs of voices in the
4-voice piece, and always track the melodic motions of the lowest
voice in that pair, then put each pair in a different tuple, and in
the voice to track melodically in the corresponding tuple in the
horizontal list. Since there are 6 pairs of voices in a 4-voice
piece, both your vertical and horizontal settings should be a list
of six tuples. This will cause the resulting n-gram results
dataframe to have six columns of observations. Your settings should
look like this:

>>> settings = {
 'n': 2, 'vertical': [
 ('0,1',),
 ('0,2',),
 ('0,3',),
 ('1,2',),
 ('1,3',),
 ('2,3')
],
 'horizontal': [
 ('1',),
 ('2',),
 ('3',),
 ('2',),
 ('3',),
 ('3',)
]
 }

Since we often want to look at all the pairs of voices in a piece,
you can set the 'vertical' setting to 'all' and this will
get all the column names from the first dataframe in the score list
of dataframes. Similarly, as we often want to always track the
melodic motions of the lowest or highest voice in the vertical
groups, the horizontal setting can be set to 'highest' or
'lowest' to automate this voice selection. This means that the
preceeding query can also be accomplished with the following
settings:

>>> settings = {
 'n': 2,
 'vertical': 'all',
 'horizontal': 'lowest'
 }

The 'brackets' setting will set off all the vertical events at each
time point in square brackets ‘[]’ and horizontal observations will
appear in parentheses ‘()’. This is particularly useful if there are
multiple observations in each vertical or horizontal slice. For
example, if we wanted to redo the query above where n = 4, but this
time tracking the melodic motions of both the upper and the lower
voice, it would be a good idea to set ‘brackets’ to True to make
the results easier to read. The settings would look like this:

>>> settings = {
 'n': 4,
 'vertical': [('0,3',)],
 'horizontal': [('0', '3',)],
 'brackets': True
 }

If you want n-grams to terminate when finding one or several
particular values, you can specify this by passing a list of strings
as the 'terminator' setting.

To show that a horizontal event continues, we use '_' by
default, but you can set this separately, for example to 'P1'
'0', as seems appropriate.

Once you’ve chosen the appropriate settings, to actually run the
indexer call it like this:

Example:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('pathnameToScore.xml')
>>> ngram_settings = {
 'n': 2,
 'vertical': 'all',
 'horizontal': 'lowest'
 }
>>> vert_settings = {
 'quality': 'chromatic',
 'simple or compound': 'simple',
 'directed': True
 }
>>> horiz_settings = {
 'quality': 'diatonic with quality',
 'simple or compound': 'simple',
 'directed': True,
 'horiz_attach_later': True
 }
>>> vert_ints = ip.get_data('vertical_interval', settings=vert_settings)
>>> horiz_ints = ip.get_data('horizontal_interval', settings=horiz_settings)
>>> ip.get_data('ngram', data=[vert_ints, horiz_ints], settings=ngram_settings)

	
default_settings = {'open-ended': False, 'vertical': 'all', 'brackets': True, 'continuer': '_', 'terminator': [], 'horizontal': [], 'align': 'left'}

	

	
possible_settings = ['horizontal', 'vertical', 'n', 'open-ended', 'brackets', 'terminator', 'continuer', 'align']

	A list of possible settings for the NGramIndexer.

	Parameters:	
	'horizontal' (list of tuples of strings, default []) – Selectors for the columns to consider as
“horizontal.”

	'vertical' (list of tuples of strings, default 'all'.) – Selectors for the column names to consider as
“vertical.”

	'n' (int [https://docs.python.org/2.7/library/functions.html#int]) – The number of “vertical” events per n-gram.

	'open-ended' (boolean, default False.) – Appends the next horizontal observation to
n-grams leaving them open-ended.

	'brackets' (bool [https://docs.python.org/2.7/library/functions.html#bool], default True.) – Whether to use delimiters around event
observations. Square brakets [] are used to set off vertical
events and round brackets () are used to set off horizontal
events. This is particularly important to leave as True
(default) for better legibility when there are multiple vertical
or multiple horizontal observations at each slice.

	'terminator' (list of str, default []) – Do not find an n-gram with a vertical item
that contains any of these values.

	'continuer' (str [https://docs.python.org/2.7/library/functions.html#str], default '_'.) – When there is no “horizontal” event that corresponds to a vertical
event, this is printed instead, to show that the previous “horizontal” event continues.

	
required_score_type = 'pandas.DataFrame'

	

	
run()

	Make an index of k-part n-grams of anything.

	Returns:	A new index of the piece in the form of a
class:~pandas.DataFrame with as many columns as there are
tuples in the ‘vertical’ setting of the passed settings.

noterest Module

Index note and rest objects into pandas DataFrame(s).

	
class vis.analyzers.indexers.noterest.MultiStopIndexer(score)

	Bases: vis.analyzers.indexer.Indexer

Index Note [http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Note], Rest [http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Rest], and
Chord [http://web.mit.edu/music21/doc/moduleReference/moduleChord.html#music21.chord.Chord] objects in a
DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame].

Rest objects become 'Rest', and Note objects
become the string-format version of their
nameWithOctave [http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Note.nameWithOctave] attribute.
Chord [http://web.mit.edu/music21/doc/moduleReference/moduleChord.html#music21.chord.Chord] objects get unpacked into their
constituent pitches.

This indexer is meant to be called indirectly with a call to
get_data on an indexed piece in the manner of the following
example.

Example:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('path_to_piece.xml')
>>> ip.get_data('multistop')

	
required_score_type = 'pandas.DataFrame'

	

	
run()

	Make a new index of the note and rest names in the piece. When a
single part has chord objects, those chords get separated out
into as many columns as there are notes in the chord with the
greatest number of notes. This means that there can be more
columns in this dataframe than there are parts in the piece.

	Returns:	A DataFrame of the new indices.
The columns have a MultiIndex.

	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame]

	
class vis.analyzers.indexers.noterest.NoteRestIndexer(score)

	Bases: vis.analyzers.indexer.Indexer

Index Note [http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Note] and Rest [http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Rest]
objects in a Part [http://web.mit.edu/music21/doc/moduleReference/moduleStream.html#music21.stream.Part].

Rest objects become 'Rest', and Note objects
become the string-format version of their
nameWithOctave [http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Note.nameWithOctave] attribute.

This indexer is meant to be called indirectly with a call to
get_data on an indexed piece in the manner of the following
example.

Example:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('path_to_piece.xml')
>>> ip.get_data('noterest')

	
required_score_type = 'pandas.DataFrame'

	

	
vis.analyzers.indexers.noterest.multistop_ind_func(event)

	Used internally by MultiStopIndexer. Convert
Note [http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Note] and Rest [http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Rest] objects
into a string and convert the Chord [http://web.mit.edu/music21/doc/moduleReference/moduleChord.html#music21.chord.Chord] objects
into a list of the strings of their consituent pitch objects. The
results must be contained in a tuple or a list so that chords can
later be unpacked into different 1-voice strands.

	Parameters:	event (A music21 note, rest, or chord object.) – A music21 note, rest, or chord object which get
queried for their names.

	Returns:	A one-tuple containing a string representation of the note
or rest, or if the event is a chord, a list of the strings of
the names of its constituent pitches.

	Return type:	1-tuple of str or list of strings

Examples:

>>> from noterest.py import indexer_func
>>> from music21 import note,
>>> indexer_func(note.Note('C4'))
(u'C4',)
>>> indexer_func(note.Rest())
(u'Rest',)
>>> indexer_func(chord.Chord([note.Note('C4'), note.Note('E5')]))
[u'C4', u'E5']

	
vis.analyzers.indexers.noterest.noterest_ind_func(event)

	Used internally by NoteRestIndexer. Convert
Note [http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Note], Rest [http://web.mit.edu/music21/doc/moduleReference/moduleNote.html#music21.note.Rest], and
 If you want to keep all the pitches in chords,
consider using the :class:`MultiStopIndexer instead.

	Parameters:	event (A music21 note, rest, or chord object.) – A music21 note, rest, or chord object which get
queried for their names.

	Returns:	A one-tuple containing a string representation of the note
or rest, or if the event is a chord, a list of the strings of
the names of its constituent pitches.

	Return type:	1-tuple of str or list of strings

Examples:

>>> from noterest.py import indexer_func
>>> from music21 import note,
>>> indexer_func(note.Note('C4'))
u'C4'
>>> indexer_func(note.Rest())
u'Rest'
>>> indexer_func(chord.Chord([note.Note('E5'), note.Note('C4')]))
u'E5'

	
vis.analyzers.indexers.noterest.unpack_chords(df)

	The c in nrc in methods like _get_m21_nrc_objs() stands for chord.
This method unpacks music21 chords into a list of their constituent
pitch objects. These pitch objects can be queried for their
nameWithOctave in the same way that note objects can in music21.
This works by broadcasting the list of pitches in each chord object
in each part’s elements to a dataframe of note, pitch, and rest
objects. So each part that had chord objects in it gets represented
as a dataframe instead of just a series. Then the series from the
parts that didn’t have chords in them get concatenated with the
parts that did, resulting in potentially more columns in the final
dataframe then there are parts in the score.

offset Module

Indexers that modify the “offset” values (floats stored as the “index”
of a pandas.Series [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series]), potentially adding repetitions of or
removing pre-existing events, without modifying the events
themselves.

	
class vis.analyzers.indexers.offset.FilterByOffsetIndexer(score, settings=None)

	Bases: vis.analyzers.indexer.Indexer

Indexer that regularizes the “offset” values of observations from
other indexers.

The Indexer regularizes observations from offsets spaced any,
possibly irregular, quarterLength durations apart, so they are
instead observed at regular intervals. This has two effects:

	events that do not begin at an observed offset will only be
included in the output if no other event occurs before the next
observed offset

	events that last for many observed offsets will be repeated for
those offsets

Since elements’ durations are not recorded, the last observation in
a Series will always be included in the results. If it does not
start on an observed offset, it will be included as the next
observed offset—again, whether or not this is true in the actual
music. However, the last observation will only ever be counted once,
even if a part ends before others in a piece with many parts. See
the doctests for examples.

Examples:

For all, the quarterLength is 1.0.

When events in the input already appear at intervals of
quarterLength, input and output are identical.

	offset
	0.0
	1.0
	2.0

	input
	a
	b
	c

	output
	a
	b
	c

When events in the input appear at intervals of quarterLength,
but there are additional elements between the observed offsets,
those additional elements are removed.

	offset
	0.0
	0.5
	1.0
	2.0

	input
	a
	A
	b
	c

	output
	a
	b
	c

	offset
	0.0
	0.25
	0.5
	1.0
	2.0

	input
	a
	z
	A
	b
	c

	output
	a
	b
	c

When events in the input appear at intervals of quarterLength,
but not at every observed offset, the event from the previous offset
is repeated.

	offset
	0.0
	1.0
	2.0

	input
	a
	c

	output
	a
	a
	c

When events in the input appear at offsets other than those observed
by the specified quarterLength, the “most recent” event will
appear.

	offset
	0.0
	0.25
	0.5
	1.0
	2.0

	input
	a
	z
	A
	c

	output
	a
	A
	c

When the final event does not appear at an observed offset, it will
be included in the output at the next offset that would be observed,
even if this offset does not appear in the score file to which the
results correspond.

	offset
	0.0
	1.0
	1.5
	2.0

	input
	a
	b
	d

	output
	a
	b
	d

The behaviour in this last example can create a potentially
misleading result for some analytic situations that consider meter.
It avoids another potentially misleading situation where the final
chord of a piece would appear to be dissonant because of a
suspension. We chose to lose metric and rythmic precision, which
would be more profitably analyzed with indexers built for that
purpose. Consider this illustration, where the numbers correspond to
scale degrees.

	offset
	410.0
	411.0
	411.5
	412.0

	in-S
	2
	1

	in-A
	7
	5

	in-T
	4 ———–
	3

	in-B
	5
	1

	out-S
	2
	1
	1

	out-A
	7
	5
	5

	out-T
	4
	4
	3

	out-B
	5
	1
	1

If we left out the note event appear in the in-A part at offset
411.5, the piece would appear to end with a dissonant sonority!

	
default_settings = {'method': 'ffill', 'mp': True}

	

	
possible_settings = ['quarterLength', 'method', 'mp']

	A list of possible settings for the
FilterByOffsetIndexer.

	Parameters:	
	'quarterLength' (float [https://docs.python.org/2.7/library/functions.html#float]) – The quarterLength duration between
observations desired in the output. This value must not have
more than three digits to the right of the decimal (i.e. 0.001
is the smallest possible value).

	'method' (str [https://docs.python.org/2.7/library/functions.html#str] or None [https://docs.python.org/2.7/library/constants.html#None]) – The value passed as the method kwarg to
reindex() [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.reindex.html#pandas.DataFrame.reindex]. The default is 'ffill',
which fills in missing indices with the previous value. This is
useful for vertical intervals, but not for horizontal, where you
should use None instead.

	'mp' (boolean) – Multiprocesses when True (default) or processes
serially when False.

Examples:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('path_to_piece.xml')
>>> notes = ip.get_data('noterest')
>>> setts = {'quarterLength': 2}
>>> ip.get_data('offset', data=notes, settings=setts)

Note that other analysis results can be passed to the offset
indexer too, such as the IntervalIndexer results as in the
following example. Also, the original column names (or names of
the series if a list of series was passed) are retained, though
the highest level of the columnar multi-index gets overwritten

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('path_to_piece.xml')
>>> intervals = ip.get_data('vertical_interval')
>>> setts = {'quarterLength': 2}
>>> ip.get_data('offset', data=intervals, settings=setts)

	
required_score_type = 'pandas.Series'

	The FilterByOffsetIndexer uses pandas.Series [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series] objects.

	
run()

	Regularize the observed offsets for the Series input.

	Returns:	A DataFrame with offset-indexed values for
all inputted parts. The pandas indices (holding music21
offsets) start at the first offset at which there is an
event in any of the inputted parts. An offset appears every
quarterLength until the final offset, which is either
the last observation in the piece (if it is divisible by
the quarterLength) or the next-highest value that is
divisible by quarterLength.

	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame]

over_bass Module

	
class vis.analyzers.indexers.over_bass.OverBassIndexer(score, settings=None)

	Bases: vis.analyzers.indexer.Indexer

Using horizontal events and vertical intervals, this finds the
intervals over the bass motion.

Call this indexer via the get_data() method of either an
indexed_piece object or an aggregated_pieces object (see
examples below). The DataFrames passed in the ‘score’ argument
should be concatenated

	Parameters:	
	'horizontal' (int [https://docs.python.org/2.7/library/functions.html#int]) – The horizontal voice you wish to use as a
bass. If not indicated, this is automatically assigned to the
lowest voice.

	'type' (str [https://docs.python.org/2.7/library/functions.html#str]) – The type of horizontal event you wish to index.
The default is ‘notes’, which should be used if you are passing
in the results of the NoteRestIndexer. If you are passing in
the results of the HorizontalIntervalIndexer.

Example:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('path_to_piece.xml')

This example provides note names for the tracked voice (usually the
bass voice):

>>> input_dfs = [ip.get_data('noterest'),
 ip.get_data('vertical_interval')]
>>> ob_setts = {'type': 'notes'}
>>> ip.get_data('over_bass', data=input_dfs, settings=ob_setts)

To use the OverBassIndexer with the melodic intervals of the tracked
voice instead, do this:

>>> input_dfs = [ip.get_data('horizontal_interval'),
 ip.get_data('vertical_interval')]
>>> ob_setts = {'type': 'intervals'}
>>> ip.get_data('over_bass', data=input_dfs, settings=ob_setts)

	
possible_settings = ['horizontal', 'type']

	

	
required_score_type = 'pandas.DataFrame'

	

	
run()

	Make a new index of the intervals over the bass motion.

	Returns:	A DataFrame of the intervals over the bass.

	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame]

repeat Module

Indexers that consider repetition in any way.

	
class vis.analyzers.indexers.repeat.FilterByRepeatIndexer(score, settings=None)

	Bases: vis.analyzers.indexer.Indexer

If the same event occurs many times in a row, remove all occurrences
but the one with the lowest offset value (i.e., the “first”
event).

Because of how a DataFrame‘s index works, many of the
events that would have been filtered will instead be replaced with
numpy.NaN. Please be careful that the behaviour of this
indexer matches your expectations.

Example:

Prepare an indexed piece:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('path_to_piece.xml')

This example filters the repeats out of the NoteRestIndexer
results, but any can be passed:

>>> notes = ip.get_data('noterest')
>>> ip.get_data('repeat', data=notes)

	
required_score_type = 'pandas.Series'

	

	
run()

	Make a new index of the piece, removing any event that is
identical to the preceding.

	Returns:	A DataFrame of the new indices.

	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame]

template Module

Template for writing a new indexer. Use this class to help write a new
:class`Indexer` subclass. The TemplateIndexer does nothing, and
should only be used by programmers.

Note

Follow these instructions to write a new Indexer
subclass:

	Replace my name with yours in the “codeauthor” directive above.

	Change the “Filename” and “Purpose” on lines 7 and 8.

	
	Modify the “Copyright” on line 10 or add an additional

	copyright line immediately below.

	
	Remove the # pylint: disable=W0613 comment just before

	indexer_func().

	Rename the class.

	Adjust required_score_type.

	
	Add settings to possible_settings and

	default_settings, as required.

	Rewrite the documentation for __init__().

	Rewrite the documentation for run().

	Rewrite the documentation for indexer_func().

	
	Write all relevant tests for __init__(),

	run(), and indexer_func().

	Follow the instructions in __init__() to write that method.

	
	Follow the instructions in run() to write

	that method.

	Write a new indexer_func().

	Ensure your tests pass, adding additional ones as required.

	Finally, run pylint with the VIS style rules.

	
class vis.analyzers.indexers.template.TemplateIndexer(score, settings=None)

	Bases: vis.analyzers.indexer.Indexer

Template for an Indexer subclass.

	
default_settings = {}

	The default values for settings named in possible_settings.
If a setting doesn’t have a value in this constant, then it must be
specified to the constructor at runtime, or the constructor should
raise a RuntimeException.

	
possible_settings = ['fake_setting']

	This is a list of string that are the names of the settings used in
this indexer. Specify the types and reasons for each setting as
though it were an argument list, like this:

	Parameters:	'fake_setting' (boolean) – This is the description of a fake setting.

	
required_score_type = 'stream.Part'

	Depending on how this indexer works, you must provide a
DataFrame, a Score, or list of Part or
Series objects. Only choose Part or
Series if the input will always have single-integer part
combinations (i.e., there are no combinations—it will be each part
independently).

	
run()

	Make a new index of the piece.

	Returns:	The new indices. Refer to the note below.

	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame] or list of
pandas.Series [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series]

Important

Please be sure you read and understand the rules
about return values in the full documentation for
run() and
make_return().

	
vis.analyzers.indexers.template.indexer_func(obj)

	The function that indexes.

	Parameters:	obj (list of objects of the types stored in
TemplateIndexer._types) – The simultaneous event(s) to use when creating this
index. (For indexers using a Score).

or

	Parameters:	obj (pandas.Series [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series] of strings) – The simultaneous event(s) to use when creating this
index. (For indexers using a Series).

	Returns:	The value to store for this index at this offset.

	Return type:	str [https://docs.python.org/2.7/library/functions.html#str]

windexer Module

	
class vis.analyzers.indexers.windexer.Windexer(score, settings=None)

	Bases: vis.analyzers.indexer.Indexer

Indexer that creates new a new windowed version of other indexer
results.

	Parameters:	'window_size' (integer) – The size of the window of the DataFrame that
you would like to look at. The default setting is 4.

Example:

Prepare an indexed piece:

>>> from vis.models.indexed_piece import Importer
>>> ip = Importer('path_to_piece.xml')

This example prepares “windows” of notes and rests, but any
dataframe could be used:

>>> notes = ip.get_data('noterest')
>>> setts = {'window_size': 4}
>>> ip.get_data('windexer', data=notes, settings=setts)

	
default_settings = {'window_size': 4}

	

	
possible_settings = ['window_size']

	

	
required_score_type = 'pandas.DataFrame'

	

	
run()

	Make a new windowed index of the indexer results.

	Returns:	The new windowed DataFrame.

	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame]

models Package

models Package

aggregated_pieces Module

The model representing data from multiple IndexedPiece instances.

	
class vis.models.aggregated_pieces.AggregatedPieces(pieces=None, metafile=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Hold data from multiple IndexedPiece instances.

	
class Metadata

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Used internally by AggregatedPieces ... at least for now.
Hold aggregated metadata about the IndexedPieces in an AggregatedPiece. Every list has no
duplicate entries.
- composers: list of all the composers in the IndexedPieces
- dates: list of all the dates in the IndexedPieces
- date_range: 2-tuple with the earliest and latest dates in the IndexedPieces
- titles: list of all the titles in the IndexedPieces
- locales: list of all the locales in the IndexedPieces
- pathnames: list of all the pathnames in the IndexedPieces

	
composers

	

	
date_range

	

	
dates

	

	
locales

	

	
pathnames

	

	
titles

	

	
AggregatedPieces.get_data(ind_analyzer=None, combined_experimenter=None, settings=None, data=None)

	Get the results of an Indexer or an Experimenter run on all the
IndexedPiece objects either individually, or all together. If settings are
provided, the same settings dict will be used throughout.

In VIS, analyzers are broken down into two categories: Indexers which associate observations
with a specific moment in a piece, and Experimenters which still work with musical
observations, but do not associate them with a specific moment in a specific IndexedPiece.
For example, the noterest.NoteRestIndexer associates each note and rest with a time point in
a given IndexedPiece, but if we then use the frequency.FrequencyExperimenter to count the
number of times each type of note or rest happens, these counts will not and cannot be
associated with a specific time point.

All VIS Indexers and most Experimenters run on each piece individually, and so if these
results are desired, the analyzer in question should be assigned to the ind_analyzer
argument. The barchart.RBarChart and aggregator.ColumnAggregator experimenters often
combine the data of several pieces together. The frequency.FrequencyExperimenter can also
be used this way. If this is the desired behavior, supply the appropriate Experimenter as
the combined_experimenter argument.

Examples

Note

The analyzers in the analyzer_cls argument are run with
get_data() from the IndexedPiece
objects themselves. Thus any exceptions raised there may also be raised here.

Get the results of an Experimenter or Indexer run on this IndexedPiece.

	Parameters:	
	ind_analyzer (str [https://docs.python.org/2.7/library/functions.html#str] or VIS Indexer or Experimenter class.) – The analyzer to run.

	settings (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Settings to be used with the analyzer. Only use if necessary.

	data (Depends on the requirement of the analyzer designated by the analyzer_cls
argument. Usually a list of pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame].) – Input data for the analyzer to run. If this is provided for an indexer that
normally caches its results (such as the NoteRestIndexer, the DurationIndexer, etc.),
the results will not be cached since it is uncertain if the input passed in the data
argument was calculated on this indexed_piece.

	Returns:	Results of the analyzer.

	Return type:	Depending on the analyzer_cls, either a pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame] or more often
a list of pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame].

	Returns:	Either one pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame] with all experimental results or a list of
DataFrame objects, each with the experimental results for one piece.

	Raises:	TypeError if an analyzer is invalid or cannot be found.

	
AggregatedPieces.metadata(field)

	Get a metadatum about the IndexedPieces stored in this AggregatedPieces.
If only some of the stored IndexedPieces have had their metadata initialized, this method
returns incompelete metadata. Missing data will be represented as None in the list,
but it will not appear in date_range unless there are no dates. If you need full
metadata, we recommend running an Indexer that requires a Score object on all the
IndexedPieces (like vis.analyzers.indexers.noterest.NoteRestIndexer).
Valid fields are:
* 'composers: list of all the composers in the IndexedPieces
* 'dates: list of all the dates in the IndexedPieces
* 'date_range: 2-tuple with the earliest and latest dates in the IndexedPieces
* 'titles: list of all the titles in the IndexedPieces
* 'locales: list of all the locales in the IndexedPieces
* 'pathnames: list of all the pathnames in the IndexedPieces
:param field: The name of the field to be accessed or modified.
:type field: str
:returns: The value of the requested field or None, if accessing a non-existant field or a

field that has not yet been initialized in the IndexedPieces.

	Return type:	object [https://docs.python.org/2.7/library/functions.html#object] or None [https://docs.python.org/2.7/library/constants.html#None]

	Raises:	TypeError if field is not a str.

indexed_piece Module

This model represents an indexed and analyzed piece of music.

	
vis.models.indexed_piece.Importer(location, metafile=None)

	Import the file, website link, or directory of files designated by location to music21
format.

	Parameters:	location (str [https://docs.python.org/2.7/library/functions.html#str]) – Location of the file to import on the local disk.

	Returns:	An IndexedPiece or an AggregatedPieces object if the file passed
imports as a music21.stream.Score [http://web.mit.edu/music21/doc/moduleReference/moduleStream.html#music21.stream.Score] or music21.stream.Opus [http://web.mit.edu/music21/doc/moduleReference/moduleStream.html#music21.stream.Opus] object
respectively.

	Return type:	A new IndexedPiece or AggregatedPieces object.

	
class vis.models.indexed_piece.IndexedPiece(pathname='', opus_id=None, score=None, metafile=None, username=None, password=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Hold indexed data from a musical score, and the score itself. IndexedPiece objects are VIS’s
basic representations of a piece of music and also a container for metadata and analyses about
that piece. An IndexedPiece object should be created by passing the pathname of a symbolic
notation file to the Importer() method in this file. The Importer() will return an IndexedPiece
object as long as the piece did not import as an opus. In this case Importer() will return an
AggregatedPieces object. Information about an IndexedPiece object from an indexer or an
experimenter should be requested via the get_data() method. If you want to access the full
music21 score object of a VIS IndexedPiece object, access the _score attribute of the
IndexedPiece object. See the examples below:

Examples
Creat an IndexedPiece object
from vis.models.indexed_piece import Importer
ip = Importer(‘path_to_file.xml’)

Get the results of an indexer or experimenter (noterest and dissonance indexers shown)
noterest_results = ip.get_data(‘noterest’)
dissonance_results = ip.get_data(‘dissonance’)

Access the full music21 score object of the file
ip._score

	
get_data(analyzer_cls, data=None, settings=None)

	Get the results of an Experimenter or Indexer run on this IndexedPiece.

	Parameters:	
	analyzer_cls (str [https://docs.python.org/2.7/library/functions.html#str] or VIS Indexer or Experimenter class.) – The analyzer to run.

	settings (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Settings to be used with the analyzer. Only use if necessary.

	data (Depends on the requirement of the analyzer designated by the analyzer_cls
argument. Usually a pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame] or a list of pandas.Series [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series].) – Input data for the analyzer to run. If this is provided for an indexer that
normally caches its results (such as the NoteRestIndexer, the DurationIndexer, etc.),
the results will not be cached since it is uncertain if the input passed in the data
argument was calculated on this indexed_piece.

	Returns:	Results of the analyzer.

	Return type:	Usually pandas.DataFrame [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.html#pandas.DataFrame] or list of pandas.Series [http://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.Series.html#pandas.Series].

	Raises:	RuntimeWarning if the analyzer_cls is invalid or cannot be found.

	Raises:	RuntimeError if the first analyzer class in analyzer_cls does not use
Score [http://web.mit.edu/music21/doc/moduleReference/moduleStream.html#music21.stream.Score] objects, and data is None.

	
load_url(url)

	

	
measure_index(dataframe)

	Multi-indexes the index of the passed dataframe by adding the measures to the offsets.
The passed dataframe should be of an indexer’s results, not an experimenters. Also adds
index labels. Note that this method currently does not work with midi files, because VIS
cannot detect measures in midi files since they are not encoded in midi. Also note that this
method should ideally only be used at the end of a set of analysis steps, because there is
no guarantee that the resultant multi-indexed dataframe will not cause problems if passed to
a subsequent indexer.

Example
from vis.models.indexed_piece import Importer()
Make an IndexedPiece object out of a symbolic notation file:
ip = Importer(‘path_to_file.xml’)
Get some results from an indexer (not an experimenter):
df = ip.get_data(‘horizontal_interval’)
Multi-index the dataframe index by adding the measure informaiton:
ip.measure_index(df)

	
metadata(field, value=None)

	Get or set metadata about the piece.
.. note:: Some metadata fields may not be available for all pieces. The available metadata

fields depend on the specific file imported. Unavailable fields return None.
We guarantee real values for pathname, title, and parts.

	Parameters:	
	field (str [https://docs.python.org/2.7/library/functions.html#str]) – The name of the field to be accessed or modified.

	value (object or None) – If not None, the value to be assigned to field.

	Returns:	The value of the requested field or None, if assigning, or if accessing
a non-existant field or a field that has not yet been initialized.

	Return type:	object or None (usually a string)

	Raises:	TypeError if field is not a string.

	Raises:	AttributeError if accessing an invalid field (see valid fields below).

Metadata Field Descriptions
All fields are taken directly from music21 unless otherwise noted.
+———————+——————————————————————–+
| Metadata Field | Description |
+=====================+==+
| alternativeTitle | A possible alternate title for the piece; e.g. Bruckner’s |
| | Symphony No. 8 in C minor is known as “The German Michael.” |
+———————+——————————————————————–+
| anacrusis | The length of the pick-up measure, if there is one. This is not |
| | determined by music21. |
+———————+——————————————————————–+
| composer | The author of the piece. |
+———————+——————————————————————–+
| composers | If the piece has multiple authors. |
+———————+——————————————————————–+
| date | The date that the piece was composed or published. |
+———————+——————————————————————–+
| localeOfComposition | Where the piece was composed. |
+———————+——————————————————————–+
| movementName | If the piece is part of a larger work, the name of this |
| | subsection. |
+———————+——————————————————————–+
| movementNumber | If the piece is part of a larger work, the number of this |
| | subsection. |
+———————+——————————————————————–+
| number | Taken from music21. |
+———————+——————————————————————–+
| opusNumber | Number assigned by the composer to the piece or a group |
| | containing it, to help with identification or cataloguing. |
+———————+——————————————————————–+
| parts | A list of the parts in a multi-voice work. This is determined |
| | partially by music21. |
+———————+——————————————————————–+
| pathname | The filesystem path to the music file encoding the piece. This is |
| | not determined by music21. |
+———————+——————————————————————–+
| title | The title of the piece. This is determined partially by music21. |
+———————+——————————————————————–+
Examples
>>> piece = IndexedPiece(‘a_sibelius_symphony.mei’)
>>> piece.metadata(‘composer’)
‘Jean Sibelius’
>>> piece.metadata(‘date’, 1919)
>>> piece.metadata(‘date’)
1919
>>> piece.metadata(‘parts’)
[‘Flute 1’{‘Flute 2’{‘Oboe 1’{‘Oboe 2’{‘Clarinet 1’{‘Clarinet 2’, ...]

	
exception vis.models.indexed_piece.OpusWarning

	Bases: exceptions.RuntimeWarning [https://docs.python.org/2.7/library/exceptions.html#exceptions.RuntimeWarning]

The OpusWarning is raised by IndexedPiece.get_data() when known_opus is
False but the file imports as a music21.stream.Opus [http://web.mit.edu/music21/doc/moduleReference/moduleStream.html#music21.stream.Opus] object, and when known_opus
is True but the file does not import as a music21.stream.Opus [http://web.mit.edu/music21/doc/moduleReference/moduleStream.html#music21.stream.Opus] object.
Internally, the warning is actually raised by IndexedPiece._import_score().

	
vis.models.indexed_piece.auth_get(url, csrftoken, sessionid)

	Use a csrftoken and sessionid to request a url on the elvisdatabase.

	
vis.models.indexed_piece.login_edb(username, password)

	Return csrf and session tokens for a login.

 Python Module Index

 v

 		 	

 		
 v	

 	[image: -]
 	
 vis	

 	
 	
 vis.analyzers	

 	
 	
 vis.analyzers.experimenter	

 	
 	
 vis.analyzers.experimenters	

 	
 	
 vis.analyzers.experimenters.aggregator	

 	
 	
 vis.analyzers.experimenters.barchart	

 	
 	
 vis.analyzers.experimenters.frequency	

 	
 	
 vis.analyzers.experimenters.template	

 	
 	
 vis.analyzers.indexer	

 	
 	
 vis.analyzers.indexers	

 	
 	
 vis.analyzers.indexers.active_voices	

 	
 	
 vis.analyzers.indexers.cadence	

 	
 	
 vis.analyzers.indexers.contour	

 	
 	
 vis.analyzers.indexers.dissonance	

 	
 	
 vis.analyzers.indexers.fermata	

 	
 	
 vis.analyzers.indexers.interval	

 	
 	
 vis.analyzers.indexers.meter	

 	
 	
 vis.analyzers.indexers.ngram	

 	
 	
 vis.analyzers.indexers.noterest	

 	
 	
 vis.analyzers.indexers.offset	

 	
 	
 vis.analyzers.indexers.over_bass	

 	
 	
 vis.analyzers.indexers.repeat	

 	
 	
 vis.analyzers.indexers.template	

 	
 	
 vis.analyzers.indexers.windexer	

 	
 	
 vis.models	

 	
 	
 vis.models.aggregated_pieces	

 	
 	
 vis.models.indexed_piece	

 	
 	
 vis.workflow	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	ActiveVoicesIndexer (class in vis.analyzers.indexers.active_voices)

 	AggregatedPieces (class in vis.models.aggregated_pieces)

 	
 	AggregatedPieces.Metadata (class in vis.models.aggregated_pieces)

 	auth_get() (in module vis.models.indexed_piece)

B

 	
 	beatstrength_ind_func() (in module vis.analyzers.indexers.meter)

C

 	
 	CadenceIndexer (class in vis.analyzers.indexers.cadence)

 	check_4s_5s() (vis.analyzers.indexers.dissonance.DissonanceIndexer method)

 	classify() (vis.analyzers.indexers.dissonance.DissonanceIndexer method)

 	ColumnAggregator (class in vis.analyzers.experimenters.aggregator)

 	
 	COM_matrix() (in module vis.analyzers.indexers.contour)

 	compare() (in module vis.analyzers.indexers.contour)

 	composers (vis.models.aggregated_pieces.AggregatedPieces.Metadata attribute)

 	ContourIndexer (class in vis.analyzers.indexers.contour)

D

 	
 	date_range (vis.models.aggregated_pieces.AggregatedPieces.Metadata attribute)

 	dates (vis.models.aggregated_pieces.AggregatedPieces.Metadata attribute)

 	default_settings (vis.analyzers.experimenter.Experimenter attribute)

 	(vis.analyzers.experimenters.aggregator.ColumnAggregator attribute)

 	(vis.analyzers.experimenters.barchart.RBarChart attribute)

 	(vis.analyzers.experimenters.frequency.FrequencyExperimenter attribute)

 	(vis.analyzers.experimenters.template.TemplateExperimenter attribute)

 	(vis.analyzers.indexer.Indexer attribute)

 	(vis.analyzers.indexers.active_voices.ActiveVoicesIndexer attribute)

 	(vis.analyzers.indexers.interval.HorizontalIntervalIndexer attribute)

 	(vis.analyzers.indexers.interval.IntervalIndexer attribute)

 	(vis.analyzers.indexers.ngram.NGramIndexer attribute)

 	(vis.analyzers.indexers.offset.FilterByOffsetIndexer attribute)

 	(vis.analyzers.indexers.template.TemplateIndexer attribute)

 	(vis.analyzers.indexers.windexer.Windexer attribute)

 	
 	DissonanceIndexer (class in vis.analyzers.indexers.dissonance)

 	DurationIndexer (class in vis.analyzers.indexers.meter)

E

 	
 	Experimenter (class in vis.analyzers.experimenter)

F

 	
 	FermataIndexer (class in vis.analyzers.indexers.fermata)

 	FilterByOffsetIndexer (class in vis.analyzers.indexers.offset)

 	
 	FilterByRepeatIndexer (class in vis.analyzers.indexers.repeat)

 	FrequencyExperimenter (class in vis.analyzers.experimenters.frequency)

G

 	
 	get_data() (vis.models.aggregated_pieces.AggregatedPieces method)

 	(vis.models.indexed_piece.IndexedPiece method)

 	
 	getContour() (in module vis.analyzers.indexers.contour)

H

 	
 	HorizontalIntervalIndexer (class in vis.analyzers.indexers.interval)

I

 	
 	Importer() (in module vis.models.indexed_piece)

 	IndexedPiece (class in vis.models.indexed_piece)

 	Indexer (class in vis.analyzers.indexer)

 	indexer1() (in module vis.analyzers.indexers.active_voices)

 	
 	indexer_func() (in module vis.analyzers.indexers.fermata)

 	(in module vis.analyzers.indexers.template)

 	IntervalIndexer (class in vis.analyzers.indexers.interval)

 	IntervalReindexer (class in vis.analyzers.indexers.interval)

L

 	
 	load() (vis.workflow.WorkflowManager method)

 	load_url() (vis.models.indexed_piece.IndexedPiece method)

 	
 	locales (vis.models.aggregated_pieces.AggregatedPieces.Metadata attribute)

 	login_edb() (in module vis.models.indexed_piece)

M

 	
 	make_return() (vis.analyzers.indexer.Indexer method)

 	measure_ind_func() (in module vis.analyzers.indexers.meter)

 	measure_index() (vis.models.indexed_piece.IndexedPiece method)

 	MeasureIndexer (class in vis.analyzers.indexers.meter)

 	
 	metadata() (vis.models.aggregated_pieces.AggregatedPieces method)

 	(vis.models.indexed_piece.IndexedPiece method)

 	(vis.workflow.WorkflowManager method)

 	multistop_ind_func() (in module vis.analyzers.indexers.noterest)

 	MultiStopIndexer (class in vis.analyzers.indexers.noterest)

N

 	
 	NGramIndexer (class in vis.analyzers.indexers.ngram)

 	NoteBeatStrengthIndexer (class in vis.analyzers.indexers.meter)

 	
 	noterest_ind_func() (in module vis.analyzers.indexers.noterest)

 	NoteRestIndexer (class in vis.analyzers.indexers.noterest)

O

 	
 	OpusWarning

 	output() (vis.workflow.WorkflowManager method)

 	
 	OUTPUT_TYPES (vis.analyzers.experimenters.barchart.RBarChart attribute)

 	OverBassIndexer (class in vis.analyzers.indexers.over_bass)

P

 	
 	pathnames (vis.models.aggregated_pieces.AggregatedPieces.Metadata attribute)

 	possible_settings (vis.analyzers.experimenter.Experimenter attribute)

 	(vis.analyzers.experimenters.aggregator.ColumnAggregator attribute)

 	(vis.analyzers.experimenters.barchart.RBarChart attribute)

 	(vis.analyzers.experimenters.frequency.FrequencyExperimenter attribute)

 	(vis.analyzers.experimenters.template.TemplateExperimenter attribute)

 	(vis.analyzers.indexer.Indexer attribute)

 	(vis.analyzers.indexers.active_voices.ActiveVoicesIndexer attribute)

 	(vis.analyzers.indexers.cadence.CadenceIndexer attribute)

 	(vis.analyzers.indexers.contour.ContourIndexer attribute)

 	(vis.analyzers.indexers.ngram.NGramIndexer attribute)

 	(vis.analyzers.indexers.offset.FilterByOffsetIndexer attribute)

 	(vis.analyzers.indexers.over_bass.OverBassIndexer attribute)

 	(vis.analyzers.indexers.template.TemplateIndexer attribute)

 	(vis.analyzers.indexers.windexer.Windexer attribute)

R

 	
 	RBarChart (class in vis.analyzers.experimenters.barchart)

 	required_score_type (vis.analyzers.indexer.Indexer attribute)

 	(vis.analyzers.indexers.active_voices.ActiveVoicesIndexer attribute)

 	(vis.analyzers.indexers.cadence.CadenceIndexer attribute)

 	(vis.analyzers.indexers.contour.ContourIndexer attribute)

 	(vis.analyzers.indexers.dissonance.DissonanceIndexer attribute)

 	(vis.analyzers.indexers.fermata.FermataIndexer attribute)

 	(vis.analyzers.indexers.interval.IntervalIndexer attribute)

 	(vis.analyzers.indexers.meter.DurationIndexer attribute)

 	(vis.analyzers.indexers.meter.MeasureIndexer attribute)

 	(vis.analyzers.indexers.meter.NoteBeatStrengthIndexer attribute)

 	(vis.analyzers.indexers.ngram.NGramIndexer attribute)

 	(vis.analyzers.indexers.noterest.MultiStopIndexer attribute)

 	(vis.analyzers.indexers.noterest.NoteRestIndexer attribute)

 	(vis.analyzers.indexers.offset.FilterByOffsetIndexer attribute)

 	(vis.analyzers.indexers.over_bass.OverBassIndexer attribute)

 	(vis.analyzers.indexers.repeat.FilterByRepeatIndexer attribute)

 	(vis.analyzers.indexers.template.TemplateIndexer attribute)

 	(vis.analyzers.indexers.windexer.Windexer attribute)

 	RSCRIPT_PATH (vis.analyzers.experimenters.barchart.RBarChart attribute)

 	
 	run() (vis.analyzers.experimenters.aggregator.ColumnAggregator method)

 	(vis.analyzers.experimenters.barchart.RBarChart method)

 	(vis.analyzers.experimenters.frequency.FrequencyExperimenter method)

 	(vis.analyzers.experimenters.template.TemplateExperimenter method)

 	(vis.analyzers.indexer.Indexer method)

 	(vis.analyzers.indexers.active_voices.ActiveVoicesIndexer method)

 	(vis.analyzers.indexers.cadence.CadenceIndexer method)

 	(vis.analyzers.indexers.contour.ContourIndexer method)

 	(vis.analyzers.indexers.dissonance.DissonanceIndexer method)

 	(vis.analyzers.indexers.interval.HorizontalIntervalIndexer method)

 	(vis.analyzers.indexers.interval.IntervalIndexer method)

 	(vis.analyzers.indexers.interval.IntervalReindexer method)

 	(vis.analyzers.indexers.meter.DurationIndexer method)

 	(vis.analyzers.indexers.ngram.NGramIndexer method)

 	(vis.analyzers.indexers.noterest.MultiStopIndexer method)

 	(vis.analyzers.indexers.offset.FilterByOffsetIndexer method)

 	(vis.analyzers.indexers.over_bass.OverBassIndexer method)

 	(vis.analyzers.indexers.repeat.FilterByRepeatIndexer method)

 	(vis.analyzers.indexers.template.TemplateIndexer method)

 	(vis.analyzers.indexers.windexer.Windexer method)

 	(vis.workflow.WorkflowManager method)

S

 	
 	series_indexer() (in module vis.analyzers.indexer)

 	
 	settings() (vis.workflow.WorkflowManager method)

 	split_part_combo() (in module vis.workflow)

T

 	
 	TemplateExperimenter (class in vis.analyzers.experimenters.template)

 	
 	TemplateIndexer (class in vis.analyzers.indexers.template)

 	titles (vis.models.aggregated_pieces.AggregatedPieces.Metadata attribute)

U

 	
 	unpack_chords() (in module vis.analyzers.indexers.noterest)

V

 	
 	vis.analyzers (module)

 	vis.analyzers.experimenter (module)

 	vis.analyzers.experimenters (module)

 	vis.analyzers.experimenters.aggregator (module)

 	vis.analyzers.experimenters.barchart (module)

 	vis.analyzers.experimenters.frequency (module)

 	vis.analyzers.experimenters.template (module)

 	vis.analyzers.indexer (module)

 	vis.analyzers.indexers (module)

 	vis.analyzers.indexers.active_voices (module)

 	vis.analyzers.indexers.cadence (module)

 	vis.analyzers.indexers.contour (module)

 	vis.analyzers.indexers.dissonance (module)

 	
 	vis.analyzers.indexers.fermata (module)

 	vis.analyzers.indexers.interval (module)

 	vis.analyzers.indexers.meter (module)

 	vis.analyzers.indexers.ngram (module)

 	vis.analyzers.indexers.noterest (module)

 	vis.analyzers.indexers.offset (module)

 	vis.analyzers.indexers.over_bass (module)

 	vis.analyzers.indexers.repeat (module)

 	vis.analyzers.indexers.template (module)

 	vis.analyzers.indexers.windexer (module)

 	vis.models (module)

 	vis.models.aggregated_pieces (module)

 	vis.models.indexed_piece (module)

 	vis.workflow (module)

W

 	
 	Windexer (class in vis.analyzers.indexers.windexer)

 	
 	WorkflowManager (class in vis.workflow)

 _images/geom_ribbon-6.png
year

_images/ELVIS_logo-framework.png
VIS

Music Analysis Framework

_static/up.png

_static/minus.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		About This Documentation

 		Design Principles

 		Three Simple Components

 		Three Levels of Interaction

 		A More Detailed Look

 		Two Types of Analyzers

 		Two Types of Models

 		Known Issues and Limitations

 		Install the Framework

 		Python 3

 		Install for Deployment

 		Install for Development

 		Optional: Test the Framework Before Use

 		If Tests Fail

 		Optional: Install R and ggplot2 for Graphs

 		Optional: Install LilyPond for Annotated Scores

 		Tutorial: Use N-Grams to Find Melodic Patterns

 		Develop a Question

 		What Does the NGramIndexer Require?

 		How Shall We Prepare Results?

 		Next Steps

 		Tutorial: Use the WorkflowManager

 		Port a Query into the WorkflowManager

 		vis

 		analyzers Package

 		analyzers Package

 		experimenter Module

 		indexer Module

 		Subpackages

 		models Package

 		models Package

 		aggregated_pieces Module

 		indexed_piece Module

 		workflow Module

_static/plus.png

_static/comment-bright.png

_static/vis-1-128.png
é" o

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

